Đề kiểm tra Học kì 2 môn Toán Lớp 10 - Đề A - Năm học 2018-2019 - Trường THPT Đức Trí

doc 3 trang xuanthu 3260
Bạn đang xem tài liệu "Đề kiểm tra Học kì 2 môn Toán Lớp 10 - Đề A - Năm học 2018-2019 - Trường THPT Đức Trí", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docde_kiem_tra_hoc_ki_2_mon_toan_lop_10_de_a_nam_hoc_2018_2019.doc

Nội dung text: Đề kiểm tra Học kì 2 môn Toán Lớp 10 - Đề A - Năm học 2018-2019 - Trường THPT Đức Trí

  1. SỞ GIÁO DỤC & ĐÀO TẠO ĐỀ KIỂM TRA HỌC KỲ 2 NĂM HỌC 2018- 2019 THÀNH PHỐ HỒ CHÍ MINH MÔN TOÁN LỚP 10 TRƯỜNG THCS – THPT Thời gian làm bài: 90 phút ĐỨC TRÍ (Không kể thời gian phát đề) ĐỀ A A. Đại số: Câu 1: (3 điểm) Giải các bất phương trình sau: 2x 1 x2 4x 3 a) 0 3x2 5x 2 b) 3x 1 2x 5 c) 5x 1 3x 2 8x 16 Câu 2: (1 điểm) Tìm m để bất phương trình: f (x) m 4 x2 (m 1)x 2m 1 0 có tập nghiệm là ¡ . Câu 3: (3 điểm) 1 3 3 a) Cho sin . Tính sin 2 ; cos4 ; tan 4 2 2 2 2 b) Rút gọn biểu thức: A tan x cot x tan x cot x 1 sin 2x tan x 1 c) Chứng minh rằng: sin2 x cos2 x tan x 1 B. Hình học (3 điểm) Cho đường tròn (C) có phương trình: x2 y2 2x 4y 20 0. a) Tìm tọa độ tâm I và bán kính R của (C). b) Viết phương trình tiếp tuyến với (C) biết tiếp tuyến song song với đường thẳng d1: 3x +4y + 5 = 0. c) Cho điểm N (3;0) ở trong (C). Viết phương trình đường thẳng d 2 đi qua N và cắt ( C) theo dây cung có độ dài nhỏ nhất. HẾT
  2. SỞ GIÁO DỤC & ĐÀO TẠO ĐỀ KIỂM TRA HỌC KỲ 2 NĂM HỌC 2018- 2019 THÀNH PHỐ HỒ CHÍ MINH MÔN TOÁN LỚP 10 TRƯỜNG THCS – THPT Thời gian làm bài: 90 phút ĐỨC TRÍ (Không kể thời gian phát đề) ĐỀ B C. Đại số: Câu 1: (3 điểm) Giải các bất phương trình sau: x 7 x2 1 a) 0 x2 6x 8 b) 4x 3 x 2 c) x 3 x 2 2x 4 Câu 2: (1 điểm) Tìm m để bất phương trình: f (x) m 1 x2 2(m 2)x m 7 0 có tập nghiệm là ¡ . Câu 3: (3 điểm) 1 3 5 a) Cho cos 2 . Tính sin2 ; cos4 ; tan 3 2 2 b) Rút gọn biểu thức: A sin4 x sin2 x.cos2 x cos2 x 1 sin 2x tan x 1 c) Chứng minh rằng: sin2 x cos2 x tan x 1 D. Hình học : (3 điểm) Cho đường tròn (C) có phương trình: x2 y2 4x 8y 5 0. a) Tìm tọa độ tâm I và bán kính R của (C). b) Viết phương trình tiếp tuyến với (C) biết tiếp tuyến song song với đường thẳng d1: 3x – 4y + 6 = 0. c) Cho điểm N (1;1) ở trong ( C). Viết phương trình đường thẳng d 2 đi qua N và cắt ( C) theo dây cung có độ dài nhỏ nhất. HẾT