Lý thuyết và Bài tập trắc nghiệm Giải tích Lớp 11 - Chủ đề 3: Dãy số. Cấp số cộng. Cấp số nhân (Có lời giải)

docx 56 trang xuanthu 29/08/2022 4460
Bạn đang xem 20 trang mẫu của tài liệu "Lý thuyết và Bài tập trắc nghiệm Giải tích Lớp 11 - Chủ đề 3: Dãy số. Cấp số cộng. Cấp số nhân (Có lời giải)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxly_thuyet_va_bai_tap_trac_nghiem_giai_tich_lop_11_chu_de_3_d.docx

Nội dung text: Lý thuyết và Bài tập trắc nghiệm Giải tích Lớp 11 - Chủ đề 3: Dãy số. Cấp số cộng. Cấp số nhân (Có lời giải)

  1. CHỦ ĐỀ 3: DÃY SỐ. CẤP SỐ CỘNG - CẤP SỐ NHÂN Phương pháp quy nạp toán học A. LÝ THUYẾT Để chứng minh những mệnh đề liên quan đến số nguyên dương n là đúng với mọi n mà không thể thử trực tiếp được thì có thể làm như sau: - Bước 1: Kiểm tra rằng mệnh đề đúng với n 1. - Bước 2: Giả thiết rằng mệnh đề đúng với một số tự nhiên bất kỳ n k 1 (gọi là giả thiết quy nạp). Bằng kiến thức đã biết và giả thiết quy nạp, chứng minh rằng mệnh đề đó cũng đúng với n k 1. B. CÁC BÀI TOÁN ĐIỂN HÌNH Ví dụ 1. Với mối số nguyên dương n , đặt S 12 22 n2 . Mệnh đề nào dưới đây là đúng? n(n 1)(n 2) n(n 1)(2n 1) A. S .B. S . 6 3 n(n 1)(2n 1) n(n 1)(2n 1) C. S .D. S . 6 2 Đáp án C. Lời giải Cách 1: Chúng ta chứng minh bằng phương pháp quy nạp toán học rằng mọi n ¥ * , ta có đẳng n(n 1)(2n 1) thức 12 22 32 n2 . 6 1(1 1)(2.1 1) - Bước 1: Với n 1 thì vế trái bằng 12 1, vế phải bằng 1. 6 Vậy đẳng thức đúng với n 1. -Bước 2: Giả sử đẳng thức đúng với n k 1, tức là chứng minh (k 1)(k 1) 12(k 1) 1 (k 1)(k 2)(2k 3) 12 22 32 k 2 (k 1)2 . 6 6 Ta phải chứng minh đẳng thức cũng đúng với n k 1, tức là chứng minh (k 1)(k 1) 12(k 1) 1 (k 1)(k 2)(2k 3) 12 22 32 k 2 (k 1)2 . 6 6 Thật vậy, theo giả thiết quy nạp ta có (k 1)(k 1)(2k 1) 12 22 32 k 2 (k 1)2 (k 1)2. 6 (k 1)(k 1)(2k 1) k(k 1)(2k 1) 6(k 1)2 (k 1)(k 2)(2k 3) Mà (k 1)2 . 6 6 6 (k 1)(k 2)(2k 3) Suy ra 12 22 32 k 2 (k 1)2 . 6 Do đó đẳng thức đúng với n k 1. Suy ra có điều phải chứng minh. Vậy phương án đúng là C. Cách 2: Kiểm tra tính đúng-sai của từng phương án đến khi tìm được phương án đúng thông qua một số giá trị cụ thể của n. + Với n 1 thì S 12 1 (loại được các phương án B và D); + Với n 2 thì S 12 22 5 (loại được phương án A). Vậy phương án đúng là C. STUDY TIP Ngoài kết quả nêu trong ví dụ 1, chúng ta có thể đề cập đến các kết quả tương tự như sau: n(n 1) 1) 1 2 n . 2
  2. n2 (n 1)2 2) 13 23 n3 . 4 n(n 1)(2n 1)(3n2 3n 1) 3) 14 24 n4 . 30 n2 (n 1)2 (2n2 2n 1) 4) 15 25 n5 . 12 n(n 1)(n 2)(n 3) 5) 1.2.3 2.3.4 n(n 1)(n 2) . 4 Nhận xét: Từ ví dụ 1 và các bài tập ở phần nhận xét, ta thấy bậc ở vế trái nhỏ hơn bậc ở vế phải là 1 đơn vị. Lưu ý điều này có thể tính được tổng dạng luỹ thừa dựa vào phương pháp hệ số bất định. Từ kết quả của ví dụ này, chúng ta hoàn toàn có thể đề xuất các câu hỏi trắc nghiệm sau đây: Câu 1. Với mỗi số nguyên n, đặt S 12 22 n2. Mệnh đề nào dưới đây là sai? 1 1 3 1 A. S 2n3 3n2 n .B. S n 1 n 1 n3 n . 6 6 6 2 1 3 n n 1 2n 1 C. S 2 n 1 3n n 1 2 n 1 . D. S . 6 6 Câu 2. Với mỗi số nguyên dương n, ta có 12 22 n2 an3 bn2 cn, trong đó a, b, c là các hằng số. Tính giá trị của biểu thức M ab2 bc2 ca2. 25 25 A. M 25 .B. M .C. M .D. M 23 . 216 6 Câu 3. Tìm tất cả các số nguyên dương n, để 12 22 n2 2017 . A. n 18.B. n 20 . C. n 17 .D. n 19. Câu 4. Tính tổng S của tất cả các số nguyên dương n, thoả mãn 12 22 n2 2018. A. S 153. B. S 171.C. S 136 .D. S 190 . Ví dụ 2. Đặt Tn 2 2 2 2 (có n dấu căn). Mệnh đề nào dưới đây là mệnh đề đúng? A. T 3 . B. T 2cos . C. T cos . D. T 5 . n n 2n 1 n 2n 1 n Đáp án B. Lời giải Ta chứng minh T 2cos bằng phương pháp quy nạp toán học. Thật vậy: n 2n 1 Bước 1: Với n 1 thì vế trái bằng 2 , còn vế phải bằng 2cos 2cos 2 . 21 1 4 Vậy đẳng thức đúng với n 1. Bước 2: Giả sử đẳng thức đúng với n k 1, nghĩa là T 2cos . k 2k 1 Ta phải chứng minh đẳng thức cũng đúng với n k 1, tức là chứng minh T 2cos . k 1 2k 2 Thật vậy, vì T 2 T nên theo giả thiết quy nạp ta có T 2 T 2 2cos . k 1 k k 1 k 2k 1 2 2 Mặt khác, 1 cos k 1 1 cos 2. k 2 2cos k 2 nên Tk 1 2.2cos k 2 2cos k 2 . 2 2 2 2 2 Vậy phương án đúng là B. STUDY TIP
  3. Ngoài cách làm như trên, ta có thể làm theo cách sau: kiểm tra tính đúng – sai của từng phương án đến khi tìm được phương án đúng thông qua một số giá trị cụ thể của n . + Với n 1 thì T1 2 (loại ngay được phương án A, C và D). Nhận xét: Từ kết quả của ví dụ 2, chúng ta có thể đề xuất các câu hỏi dưới đây: 511 Câu 1. Đặt T 2 2 2 2 (có n dấu căn). Tìm n để T 2sin . n n 1024 A. n 10 . B. n 9 . C. n 11. D. n 8 . * Câu 2. Cho dãy số un xác định bởi u1 2 và un 1 2 un ,n ¥ . Số hạng tổng quát của dãy số un là: A. u 2sin . B. u 2cos . n 2n 1 n 2n 1 C. u cos . D. u sin . n 2n 1 n 2n 1 1 1 1 Ví dụ 3. Đặt S ,với n ¥ * .Mệnh đề nào dưới đây đúng? n 1.3 3.5 (2n 1)(2n 1) n 1 3n 1 n n 2 A. S . B. S . C. S . D. S . n 2(2n 1) n 4n 2 n 2n 1 n 6n 3 Đáp án C. Lời giải Cách 1: Rút gọn biểu thức Sn dựa vào việc phân tích phần tử đại diện. 1 1 1 1 Với mọi số nguyên dương k , ta có . (2k 1)(2k 1) 2 2k 1 2k 1 1 1 1 1 1 1 1 1 n Do đó: Sn 1 1 . 2 3 3 5 2n 1 2n 1 2 2n 1 2n 1 Vậy phương án đúng là phương án C. Cách 2: Kiểm tra tính đúng – sai của phương án dựa vào một số giá trị cụ thể của n. 1 1 Với n 1thì S (chưa loại được phương án nào); 1 1.3 3 1 1 2 Với n 2 thì S (loại ngay được các phương án A,B và D. 2 1.3 3.5 5 Vậy phương án đúng là phương án C. Nhận xét: Từ kết quả của ví dụ này,chúng ta hoàn toàn trả lời được các câu hỏi trắc nghiệm sau đây: 1 1 1 an b Câu 1. Với n ¥ * ,biết rằng . Trong đó a,b,c là các số 1.3 3.5 (2n 1)(2n 1) cn 1 nguyên. Tính giá trị biểu thức P a2 b3 c4 . A. P 17 . B. P 10. C. P 9. D. P 19. 1 1 1 an b Câu 2. Với n ¥ * ,biết rằng . Trong đó a,b,c là các số 1.3 3.5 (2n 1)(2n 1) 4n c nguyên.Tính giá trị biểu thức T a b c a2 b2 c2 . A. T 40 . B. T 4. C. T 32 . D. T 16 .
  4. 2 1 1 1 an bn c * Câu 3.Biết rằng 2 ,trong đó n ¥ và a,b,c là các số 1.3 3.5 (2n 1)(2n 1) 2n 1 nguyên. Tính giá trị biểu thức F a b a c . A. F 9 . B. F 6 . C. F 8 . D. F 27 . Câu 4. Tính tổng S của tất cả các số nguyên dương n thỏa mãn bất phương trình 1 1 1 17 1.3 3.5 (2n 1)(2n 1) 35 A. S 153. B. S 136 . C. S 272 . D. S 306 . Ví dụ 4. Tìm tất cả các số nguyên dương n sao cho 2n 1 n2 3n. A. n 3 .B. n 5 .C. n 6 .D. n 4 . Đáp án D. Lời giải Kiểm tra tính đúng – sai của bất đẳng thức với các trường hợp n 1,2,3,4, ta dự đoán được 2n 1 n2 3n, với n 4. Ta chứng minh bất đẳng thức này bằng phương pháp quy nạp toán học. Thật vây: -Bước 1: Với n 4 thì vế trái bằng 24 1 25 32, còn vế phải bằng 42 3.4 28. Do 32 28 nên bất đẳng thức đúng với n 4. -Bước 2: Giả sử đẳng thức đúng với n k 4, nghĩa là 2k 1 k 2 3k. Ta phải chứng minh bất đẳng thức cũng đúng với n k 1, tức là phải chứng minh 2 k 1 1 k 1 2 3 k 1 hay 2k 2 k 2 5k 4. Thật vậy, theo giả thiết quy nạp ta có 2k 1 k 2 3k. Suy ra 2.2k 1 2 k 2 3k hay 2k 2 2k 2 6k Mặt khác 2k 2 6k k 2 5k 4 k 2 k 4 42 4 4 16 với mọi k 4. Do đó 2k 2 2 k 2 3k k 2 5k 4 hay bất đẳng thức đúng với n k 1. Suy ra bất đẳng thức được chứng minh. Vậy phương án đúng là D. STUDY TIP Dựa vào kết quả ví dụ 4, ta có thể đề xuất bài toán sau: Tìm số nguyên tố p nhỏ nhất sao cho: 2n 1 n2 3n,n p,n ¥ * A. p 3 .B. p 5 .C. p 4 .D. p 7 . C. BÀI TẬP RÈN LUYỆN KỸ NĂNG Câu 1. Tổng S các góc trong của một đa giác lồi n cạnh, n 3 , là: A. S n.180.B. S n 2 .180. C. S n 1 .180 .D. S n 3 .180 . Câu 2. Với n ¥ * , hãy rút gọn biểu thức S 1.4 2.7 3.10 n 3n 1 . A. S n n 1 2 .B. S n n 2 2 . C. S n n 1 .D. S 2n n 1 . * * Câu 3. Kí hiệu k! k k 1 2.1,k ¥ . Với n ¥ , đặt Sn 1.1! 2.2! n.n!. Mệnh đề nào dưới đây là đúng? A. Sn 2.n!.B. Sn n 1 ! 1. C. Sn n 1 !.D. Sn n 1 ! 1. * 2 2 2 2 2 2 2 2 Câu 4. Với n ¥ , đặt Tn 1 2 3 2n và M n 2 4 6 2n . Mệnh đề nào dưới đây là đúng?
  5. T 4n 1 T 4n 1 T 8n 1 T 2n 1 A. n .B. n .C. n . D. n . M n 2n 2 M n 2n 1 M n n 1 M n n 1 Câu 5. Tìm số nguyên dương p nhỏ nhất để 2n 2n 1 với mọi số nguyên n p . A. p 5 .B. p 3 . C. p 4 .D. p 2 . Câu 6. Tìm tất cả các giá trị của n ¥ * sao cho 2n n2 . A. n 5 .B. n 1 hoặc n 6 .C n 7 . D. n 1 hoặc n 5 . 1 1 1 an b Câu 7. Với mọi số nguyên dương n , ta có: , trong đó a,b,c là 2.5 5.8 3n 1 3n 2 cn 4 các số nguyên. Tính các giá trị của biểu thức T ab2 bc2 ca2 . A. T 3.B. T 6 . C. T 43 . D. T 42 . 1 1 1 an 2 Câu 8. Với mọi số nguyên dương n 2 , ta có: 1 1 1 , trong đó a,b là các 4 9 n2 bn 4 số nguyên. Tính các giá trị của biểu thức T a2 b2 . A. P 5.B. P 9. C. P 20 .D. P 36. Câu 9. Biết rằng 13 23 n3 an4 bn3 cn2 dn e, n ¥ * . Tính giá trị biểu thức M a b c d e . 1 1 A. M 4 .B. M 1. C. M .D. M . 4 2 3 2 Câu 10. Biết rằng mọi số nguyên dương n , ta có 1.2 2.3 n n 1 a1n b1n c1n d1 và 3 2 1.2 2.5 3.8 n 3n 1 a2n b2n c2n d2 . Tính giá trị biểu thức T a1a2 b1b2 c1c2 d1d2 . 4 2 A. T 2 .B. T 1.C. M .D. T . 3 3 Câu 11. Biết rằng 1k 2k nk , trong đó n,k là số nguyên dương. Xét các mệnh đề sau: 2 n n 1 n n 1 2n 1 n2 n 1 n n 1 2n 1 3n2 3n 1 S , S , S và S . 1 2 2 6 3 4 4 30 Số các mệnh đề đúng trong các mệnh đề nói trên là: A. 4 .B. 1. C. 2 . D. 3 . Câu 12. Với n ¥ * , ta xét các mệnh đề P :"7n 5 chia hết cho 2"; Q :"7n 5 chia hết cho 3" và Q :"7n 5 chia hết cho 6" . Số mệnh đề đúng trong các mệnh đề trên là : A.3 .B. 0 . C. 1. D. 2 . Câu 13. Xét bài toán: “Kiểm nghiệm với số nguyên dương n bất đẳng thức n 2n 1 ”. Một học sinh đã trình bày lời giải bài toán này bằng các bước như sau: Bước 1: Với n 1, ta có: n! 1! 1 và 2n 1 21 1 20 1. Vậy n! 2n 1 đúng. Bước 2 : Giả sử bất đẳng thức đúng với n k 1, tức là ta có k! 2k 1 . Ta cần chứng minh bất đẳng thức đúng với n k 1, nghĩa là phải chứng minh k 1 ! 2k . Bước 3 : Ta có k 1 ! k 1 .k! 2.2k 1 2k . Vậy n! 2n 1 với mọi số nguyên dương n . Chứng minh trên đúng hay sai, nếu sai thì sai từ bước nào ? A. Đúng.B. Sai từ bước 2.C. Sai từ bước 1.D. Sai từ bước 3. 1 1 1 an2 bn Câu 14. Biết rằng , trong đó a,b,c,d và n là các số 1.2.3 2.3.4 n n 1 n 2 cn2 dn 16 nguyên dương. Tính giá trị của biểu thức T a c b d .
  6. là : A.T 75 .B. T 364 . C. T 300 . D. T 256 . D. HƯỚNG DẪN GIẢI Câu 1. Đáp án B. Cách 1: Từ tổng các góc trong tam giác bằng 180 và tổng các góc trong từ giác bằng 360 , chúng ta dự đoán được S n 2 .180. Cách 2: Thử với những trường hợp đã biết để kiểm nghiệm tính đúng –sai từ các công thức. Cụ thể là với n 3 thì S 180 (loại luôn được các phương án A, C và D); với n 4 thì S 360 (kiểm nghiệm phương án B lần nữa). Câu 2. Đáp án A. Để chọn được S đúng, chúng ta có thể dựa vào một trong ba cách sau đây: Cách 1: Kiểm tra tính đúng –sai của từng phương án với những giá trị của n . Với n 1 thì S 1.4 4 (loại ngay được phương án B và C); với n 2 thì S 1.4 2.7 18 (loại được phương án D). Cách 2: Bằng cách tính S trong các trường hợp n 1, S 4; n 2, S 18; n 3, S 48 ta dự đoán được công thức S n n 1 2 . n n 1 Cách 3: Ta tính S dựa vào các tổng đã biết kết quả như 1 2 n và 2 n n 1 2n 1 2 12 22 n2 . Ta có: S 3 12 22 n2 1 2 n n n 1 . 6 Câu 3. Đáp án B. Chúng ta có thể chọn phương án đúng dựa vào một trong hai cách sau đây: Cách 1: Kiểm nghiệm từng phương án đúng đối với những giá trị cụ thể của n . Với n 1 thì S1 1.1! 1 (Loại ngay được các phương án A, C, D). Cách 2: Rút gọn Sn dựa vào việc phân tích phần tử đại diện k.k! k 1 1 .k! k 1 .k! k! k 1 ! k!. Suy ra: Sn 2! 1! 3! 2! n 1 ! n! n 1 ! 1. Câu 4. Đáp án A. Chúng ta có thể chọn phương án đúng dựa vào một trong hai cách sau đây: Cách 1: Kiểm nghiệm từng phương án đúng đối với những giá trị cụ thể của n . 2 2 2 T1 5 Với n 1 thì T1 1 2 5;M1 2 4 nên (loại ngay được các phương án B, C, D). M1 4 Cách 2: Chúng ta tính Tn , M n dựa vào những tổng đã biết kết quả. Cụ thể dựa vào ví dụ 1: 2n 2n 1 4n 1 2n n 1 2n 1 Tn 4n 1 Tn ;M n . Suy ra . 6 3 M n 2n 2 Câu 5. Đáp án B. Dễ thấy p 2 thì bất đẳng thức 2 p 2 p 1 là sai nên loại ngay phương án D. Xét với p 3 ta thấy 2 p 2 p 1 là bất đửng thức đúng. Bằng phương pháp quy nạp toán học chúng ta chứng minh được rằng 2n 2n 1 với mọi n 3 . Vậy p 3 là số nguyên dương nhỏ nhất cần tìm. Câu 6. Đáp án D. Kiểm tra với n 1 ta thấy bất đẳng thức đúng nên loại ngay phương án A và C. Kiểm tra với n 1 ta thấy bất đẳng thức đúng. Bằng phương pháp quy nạp toán học chúng ta chứng minh được rằng 2n n2 ,n 5 .
  7. Câu 7. Đáp án B. 1 1 1 1 Cách 1: Với chú ý , chúng ta có: 3k 1 3k 2 3 3k 1 3k 2 1 1 1 1 1 1 1 1 1 1 2.5 5.8 3n 1 3n 2 3 2 5 5 8 3n 1 3n 2 1 3n n = . . 3 2 3n 2 6n 4 Đối chiếu với đẳng thức đã cho, ta có: a 1,b 0,c 6 . Suy ra T ab2 bc2 ca2 6 . a b 1 2a b 1 3x b 3 Cách 2: Cho n 1,n 2,n 3 ta được: ; ; . c 4 10 2c 4 8 3c 4 22 Giải hệ phương trình trên ta được a 1,b 0,c 6 . Suy ra T ab2 bc2 ca2 6 Câu 8. Đáp án C. 1 k 1 k 1 Cách 1: Bằng cách phân tích số hạng đại diện, ta có: 1 . . Suy ra k 2 k k 1 1 1 1 3 2 4 n 1 n 1 n 1 2n 2 1 1 1 . . . . . 4 9 n2 2 2 3 3 n 2n 2n 4n Đối chiếu với đẳng thức đã cho ta có: a 2,b 4 . Suy ra P a2 b2 20 . a 1 3 3a 2 2 Cách 2: Cho n 2,n 3 ta được ; . Giải hệ phương trình trren ta được b 4 3b 3 a 2;b 4 . Suy ra P a2 b2 20 . Câu 9. Đáp án B. n2 n 1 2 n4 2n3 n2 Cách 1: Sử dụng kết quả đã biết: 13 23 n3 . So sánh cách hệ 4 4 1 1 1 số, ta được a ;b ;c ;d e 0 . 4 2 4 Cách 2: Cho n 1,n 2,n 3,n 4,n 5, ta được hệ 5 phương trình 5 ẩn a,b,c,d,e . Giải hệ 1 1 1 phương trình đó, ta tìm được a ;b ;c ;d e 0 . Suy ra M a b c d e 1. 4 2 4 Câu 10. Đáp án C. Cách 1: Sử dụng các tổng lũy thừa bậc 1 và bậc 2 ta có: 1 2 +) 1.2 2.3 n n 1 12 22 n2 1 2 n n3 n2 n . 3 3 1 2 Suy ra a ;b 1;c ;d 0 . 1 3 1 1 3 1 +) 1.2 2.5 3.8 n 3n 1 3 12 22 n2 1 2 n n3 n2. Suy ra a2 b2 1;c2 d2 0. 4 Do đó T a a b b c c d d . 1 2 1 2 1 2 1 2 3 Cách 2: Cho n 1,n 2,n 3,n 4 và sử dụng phương pháp hệ số bất đinh ta cũng tìm được 1 2 a ;b 1;c ;d 0 ; a b 1;c d 0. 1 3 1 1 3 1 2 2 2 2 4 Do đó T a a b b c c d d . 1 2 1 2 1 2 1 2 3 Câu 11. Đáp án D.
  8. n2 n 1 2 Bằng các kết quả đã biết ở ví dụ 1, chúng ta thấy ngay được chỉ có S là sai. 3 4 Câu 12. Đáp án A. Bằng phương pháp quy nạp toán học, chúng ta chứng minh được rằng 7n 5 chia hết cho 6. Thật vậy: Với n 1 thì 71 5 126 . Giả sử mệnh đề đúng với n k 1, nghĩa là 7k 5 chia hết ccho 6. Ta chứng minh mệnh đề đúng với n k 1, nghĩa là phỉa chứng minh 7k 1 5 chia hết cho 6. Ta có: 7k 1 5 7 7k 5 30 . Theo giả thiết quy nạp thì 7k 5 chia hết cho 6 nên 7k 1 5 7 7k 5 30 cũng chia hết cho 6. Vậy 7n 5 chia hết cho 6 với mọi n 1. Do đó các mệnh đề P và Q cũng đúng. Câu 13. Đáp án A. Câu 14. Đáp án C. 1 1 1 1 Phân tích phần tử đại diện, ta có: . k k 1 k 2 2 k k 1 k 1 k 2 1 1 1 Suy ra: 1.2.3 2.3.4 n n 1 n 2 1 1 1 1 1 1 1 . 2 1.2 2.3 2.3 3.4 n n 1 n 1 n 2 1 1 1 n2 3n 2n2 6n = . 2 2 n 1 n 2 4n2 12n 8 8n2 24n 16 Đối chiếu với hệ số, ta được: a 2;b 6;c 8;d 24 . Suy ra: T a c b d 300 . DÃY SỐ A. LÝ THUYẾT 1. Định nghĩa: Một hàm số u xác định trên tập hợp các số nguyên dương ¥ * được gọi là một dãy số vô hạn (hay còn gọi tắt là dãy số) Người ta thường viết dãy số dưới dạng khai triển u1,u2 , ,un , , trong đó un u n hoặc viết tắt là un . Số hạng u1 được gọi là số hạng đầu, un là số hạng tổng quát (số hạng thứ n ) của dãy số. 2. Các cách cho một dãy số: Người ta thường cho một dãy số bằng một trong các cách dưới đây: - Cách 1: Cho dãy số bằng công thức của số hạng tổng quát. n Ví dụ 1. Cho dãy số x với x . n n 3n 1 Dãy số cho bằng cách này có ưu điểm là chúng ta có thể xác định được ngay số hạng bất kỳ 10 10 của dãy số. Chẳng hạn, x . 10 311 177147 - Cách 2: Cho dãy số bằng phương pháp truy hồi. Ví dụ 2. Cho dãy số an xác định bởi a1 1 và an 1 3an 7,n 1.
  9. b1 1,b2 3 Ví dụ 3. Cho dãy số bn xác định bởi . bn 2 4bn 1 5bn ,n 1 Với cách này, ta có thể xác định được ngay mối liên hệ giữa các số hạng hoặc nhóm các số hạng của dãy số thông qua hệ thức truy hồi. Tuy nhiên, để tính được các số hạng bất kỳ của dãy số thì chúng ta cần phải tích được các số hạng trước đó hoặc phải tìm được công thức tính số hạng tổng quát của dãy số. - Cách 3: Cho dãy số bằng phương pháp mô tả hoặc diễn đạt bằng lời cách xác định mỗi số hẩng dãy số. Ví dụ 4. Cho dãy số un gồm các số nguyên tố. Ví dụ 5. Cho tam giác đều ABC có cạnh bằng 4. Trên cạnh BC , ta lấy điểm A1 sao cho CA1 1. Gọi B1 là hình chiếu của A1 trên CA , C1 là hình chiếu của B1 trên AB , A2 là hình chiếu của C1 trên BC , B2 là hình chiếu của A2 trên CA , và cứ tiếp tục như thế, Xét dãy số un với un CAn . 3. Dãy số tăng, dãy số giảm, dãy số hằng: * Dãy số un được gọi là dãy số tăng nếu ta có un 1 un với mọi n ¥ . * Dãy số un được gọi là dãy số giảm nếu ta có un 1 un với mọi n ¥ . Dãy số un được gọi là dãy số hằng (hoặc dãy số không đổi) nếu ta có un 1 un với mọi n ¥ * . 2 Ví dụ 6. a) Cho dãy số xn với xn n 2n 3 là một dãy số tăng. 2 2 Chứng minh: Ta có xn 1 n 1 2 n 1 3 n 2 . 2 2 Suy ra xn 1 xn n 2 n 2n 3 2n 1 0,n 1 hay xn 1 xn ,n 1. Vậy xn là một dãy số tăng. n 2 b) Dãy số y với y là một dãy số giảm. n n 5n Chứng minh: n 3 n 3 n 2 4n 7 Cách 1: Ta có y . Suy ra y y 0,n 1 hay n 1 5n 1 n 1 n 5n 1 5n 5n 1 yn 1 yn ,n 1.Vậy yn là một dãy số giảm. * yn 1 Cách 2: Với n ¥ , ta có yn 0 nên ta xét tỉ số . yn n 3 yn 1 n 3 Ta có yn 1 n 1 nên 1,n 1. Vậy yn là một dãy số giảm. 5 yn 5 n 2 n c) Dãy số zn với zn 1 không phải là một dãy số tăng cũng không phải là một dãy số n 1 n n giảm vì zn 1 zn 1 1 2 1 không xác định được dương hay âm. Đây là dãy số đan dấu. STUDY TIP Để chứng minh dãy số bn là dãy số giảm hoặc dãy số tăng, chúng ta thường sử dụng một trong 2 hướng sau đây: (1): Lập hiệu un un 1 un . Sử dụng các biến đổi đại sốvà các kết quả đã biết để chỉ ra un 0 (dãy số tăng) hoặc un 0 (dãy số giảm)
  10. un 1 (2): Nếu un 0,n 1thì ta có thể lập tỉ số Tn . Sử dụng các biến đổi đại số và các kết un quả đã biết để chỉ ra Tn 1 (dãy số tăng),Tn 1(dãy số giảm). 4. Dãy số bị chặn * Dãy số un được gọi là bị chặn trên nếu tồn tại một số M sao cho um M ,n ¥ . * Dãy số un được gọi là bị chặn dưới nếu tồn tại một số m sao cho um m,n ¥ . Dãy số un được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số * M , m sao cho m um M ,n ¥ . Ví dụ 7: 3n 1 a) Dãy số a với a 2017sin là một dãy số bị chặn vì 2017 a 2017,n ¥ * n n 4 n . 2n 3 2 b) Dãy số b với b là một dãy số bị chặn vì b 1,n ¥ * . n n 3n 2 3 n n 1 * c) Dãy số cn với cn 3n 2 .7 bị chặn dưới vì an 49,n ¥ . * d) Dãy số dn với dn 6 6 6 ( n dấu căn), bị chặn trên vì dn 3,n ¥ . STUDY TIP 1) Nếu un là dãy số giảm thì bị chặn trên bởi u1 . 2) Nếu un là dãy số tăng thì bị chặn dưới bởi u1 . B. Các bài toán điển hình n n Câu 5. Cho dãy số a xác định bởi a 2017sin 2018cos . Mệnh đề nào dưới đây là mệnh n n 2 3 đề đúng? * * A. an 6 an ,n ¥ . B. an 9 an ,n ¥ . * * C. an 12 an ,n ¥ . D. an 15 an ,n ¥ . Đáp án C Lời giải Kiểm tra từng phương án đến khi tìm được đáp án đúng. n 6 n 6 n n + Ta có a 2017sin 2018cos 2017sin 2018cos a n 6 2 3 2 3 n n 9 n 9 n n + Ta có a 2017sin 2018cos 2017sin 2018cos a . n 6 2 3 2 3 n n 12 n 12 n n + Ta có a 2017sin 2018cos 2017sin 2018cos a . n 12 2 3 2 3 n n 15 n 15 n n + Ta có a 2017sin 2018cos 2017sin 2018cos a . n 15 2 3 2 3 n Vậy phương án đúng là C. Nhận xét: Từ kết quả trong ví dụ này, chúng ta có thể trả lời được các câu hỏi trắc nghiệm sau đây n n Cho dãy số a xác định bởi a 2017sin 2018cos . Hãy chọn phương án trả lời n n 2 3 đúng trong mỗi câu hỏi sau đây:
  11. * Câu 1: Tìm số nguyên dương p nhỏ nhất để an p ap ,n ¥ Câu 2: Số hạng thứ 2017 của dãy số là số hạng nào dưới đây? A. 3026 .B. 2017 1009 3 . C. 2017 1009 3 .D. 3026 . 3 5 Câu 6. Cho dãy số a xác định bởi a 1;a a 2 a 1,n ¥ * . Số hạng thứ 201 của dãy n 1 n 1 2 n 2 n số an có giá trị bằng bao nhiêu? A. a2018 2 . B. a2018 1. C. a2018 0 . D. a2018 5. Đáp án A Lời giải Nhận thấy dãy số trên là dãy số cho bởi công thức truy hồi. Ta có a1 1;a2 2;a3 0;a4 1;a2 2;a6 0; 1. * Từ đây chúng ta có thể dự đoán an 3 an ,n ¥ . Chúng ta khẳng định dự đoán đó bằng phương pháp quy nạp toán học. Thật vậy: Với n 1 thì a1 1 và a4 1. Vậy đẳng thức đúng với n 1. Giả sử đẳng thức đúng với n k 1, nghĩa là ak 3 ak . Ta phải chứng minh đẳng thức đúng với n k 1, nghĩa là chứng minh ak 4 ak 1 . 3 5 Thật vậy, ta có a a2 a 1 (theo hệ thức truy hồi). k 4 2 k 3 2 k 3 3 5 Theo giả thiết quy nạp thì a a nên a a2 a 1 a . k 3 k k 4 2 k 2 k k 1 * Vậy đẳng thức đúng với n k 1. Suy ra an 3 an ,n ¥ . Từ kết quả phần trên, ta có : nếu m  p mod3 thì am ap . Ta có 2018  2 mod3 nên a2018 2 . Vậy phương án đúng là A. * Nhận xét: Việc chứng minh được hệ thức an 3 an ,n ¥ giúp ta giải quyết được bài toán tính tổng hoặc xác định được số hạng tùy ý của dãy số. Vì vậy, việc phát hiện ra tính chất đặc biệt của một dãy số sẽ giúp chúng ta giải quyết các yêu cầu liên quan đến dãy số một cách thuận lợi và dễ dàng hơn. Chúngta cùng kiểm nghiệm qua các câu hỏi trắc nghiệm khách quan dưới đây nhé: 3 5 Cho dãy số a xác định bởi a 1;a a 2 a 1,n ¥ * . Hãy chọn phương án trả n 1 n 1 2 n 2 n lời đúng trong mỗi câu hỏi sau đây: Câu 1. Tính tổng S của sáu số hạng đầu tiên của dãy an A. S 0 . B. S 6 . C. S 4 . D. S 5. * Câu 2. Tìm số nguyên dương p nhỏ nhất để an p ap ,n ¥ A. p 9 . B. p 2 . C. p 6. D. p 3 . Câu 3. Tính tổng S của 2018 số hạng đầu tiên của dãy an A. S 2016 . B. S 2019 . C. S 2017 . D. S 2018 . Câu 4. Tính tổng bình thường của 2018 số hạng đầu tiên của dãy an A. S 3360 . B. S 3361. C. S 3364 . D. S 3365.
  12. 2 * Câu 7. Cho dãy số an xác định bởi a1 1;an 1 an 1,n ¥ . Tìm số hạng tổng quát của dãy số an . A. an 2 . B. an 2n 1 . C. an 3n 2 . D. an n . Đáp án D Lời giải Ta có a2 2;a3 3;a4 4;a5 5 . Từ 5 số hạng đầu của dãy ta dự đoán được an n . Bằng phương pháp quy nạp toán học chúng ta chứng minh được an n . Vậy phương án đúng là D. Nhận xét: Với kết quả của ví dụ này, chúng ta có thể đề xuất các câu hỏi trắc nghiệm dưới đây: 2 * Cho dãy số an xác định bởi a1 1;an 1 an 1,n ¥ . Hãy chọn phương án trả lời đúng trong mỗi câu hỏi sau đây: 1 1 1 Câu 1. Rút gọn biểu thức sn ,n 2 ta được a1 a2 a2 a3 an 1 an n n A. S n 1. B. S n 1. C. S . D. S . n n n n 1 n n 1 Câu 2. Mệnh đề nào dưới đây là đúng A. Dãy số an là dãy số giảm. B. Dãy số an không là dãy số giảm. C. Dãy số an là dãy số tăng. D. Dãy số an không là dãy số tăng. 2 2 2 Câu 3. Rút gọn biểu thức Sn a1 a2 an n n 1 n n 1 A. S n n 1 . B. S n n 1 . C. S . D. S . n n n 2 n 2 STUDY TIP Ngoài cách làm bên, ta có thể kiểm tra từng phương án đến khi tìm được phương án đúng thông qua việc xác định một vài số hạng đầu của dãy + Với a1 1 thì loại ngay được phương án A. +Ta có a2 2 thì loại ngay được các phương án B và C. 3 Câu 8. Cho dãy số an có tổng của n số hạng đầu tiên bằng Sn n . Mệnh đề nào dưới đây là đúng? 2 A. an là dãy số tăng và an 3n 3n 1. 2 B. an là dãy số giảm và an 3n 3n 1. 2 C. an là dãy số tăng và an 3n 3n 1. 2 D. an là dãy số tăng và an 3n 3n 1. Đáp án A. Lời giải 3 3 Ta có a1 a2 an Sn n và a1 a2 an 1 Sn 1 n 1 . 3 3 2 Suy ra an Sn Sn 1 n n 1 3n 3n 1.
  13. 2 2 2 Ta có an 3n 3n 1 và an 1 3 n 1 3 n 1 1 3n 9n 7 . * Do đó an an 1 6n 1 0,n ¥ . Dấu bằng chỉ xảy ra khi n 1 0 hay n 1. suy ra dãy số an là dãy số tăng. Vậy phương án đúng là A. * Câu 9. Cho dãy số an xác định bởi a1 1;an 1 3an 10,n ¥ . Tìm số hạng thứ 15 của dãy số an . A. a15 28697809 . B. a15 28697814 . C. a15 9565933. D. a15 86093437 . Đáp án A Lời giải Chúng ta đi tìm công thức xác định số hạng tổng quát của dãy số an . Đặt bn an 5 khi đó bn 1 an 1 5 . * Từ hệ thức truy hồi an 1 3an 10,n ¥ suy ra bn 1 5 3 bn 5 10 bn 1 3bn . Như vậy ta có b1 a1 5 6;bn 1 3bn . 2 3 Ta có b2 3b1 ;b3 3b2 3 b1 b43 3b3 3 b1 . Bằng phương pháp quy nạp ta chứng minh được n 1 * n * rằng bn 3 b1,n ¥ , suy ra an 2.3 5,n ¥ . Do đó a15 28697809 . Vậy suy ra phương án đúng là A. STUDY TIP * Dãy số an xác định bởi a1 1;an 1 qan d,n ¥ d 1 qn 1 -Nếu q 1 thì số hạng tổng quát của dãy số a là a aqn 1 . n n 1 q -Nếu q 1 thì số hạng tổng quát của dãy số an là an a n 1 d . Cho dãy số an xác định bởi và an 1 3an 10,n ¥ * . Hãy chọn phương án trả lời đúng trong mỗi câu hỏi sau đây. Câu 1. Số hạng thứ ba, thứ năm và thứ bảy của dãy số an lần lượt là: A. 13,49,157 . B. 49,481,4369. C. 49,157,1453 . D. 49,1453,4369 . Câu 2. Tìm số hạng tổng quát của dãy số an . n n 1 n n A. an 2.3 5. B. an 2.3 5. C. an 2.3 5. D. an 2.3 5 . Câu 3. Số 2324522929 có là số hạng của dãy số an không, nếu có thì nó là số hạng thứ bao nhiêu? A. Không. B. Có, 18. C. Có, 19. D. Có, 20 . Câu 4. an là một dãy số: A. Giảm và bị chặn trên. B. Tăng và bị chặn trên. C. Tăng và bị chặn dưới. D. Giảm và bị chặn dưới. Ví dụ 6. Cho dãy số an xác định bởi a1 5,a2 0 và an 2 an 1 6an ,n 1. Số hạng thứ 14 của dãy là số hạng nào? A. 3164070 . B. 9516786 . C. 1050594. D. 9615090 . Đáp án A Lời giải + Ta có an 2 an 1 6an ,n 1 an 2 2an 1 3 an 1 2an ,n 1.
  14. Do đó ta có b1 a2 2a1 10 và bn 1 3bn ,n 1. 2 3 Từ hệ thức truy hồi của dãy số bn , ta có b2 3b1;b3 3b2 3 b1;b4 3b3 3 b1 . Bằng phương pháp quy nạp toán học, chúng ta chứng minh được rằng: n 1 n 1 bn 3 b1 10.3 ,n 1. + Ta có an 2 an 1 6an ,n 1 an 2 3an 1 2 an 1 3an ,n 1. Do đó ta có: c1 a2 3a1 15 và cn 1 2cn ,n 1. 2 3 Từ hệ thức truy hồi của dãy số cn , ta có c2 2c1;c3 2 c1;c4 2 c1 . Bằng phương pháp quy nạp toán học, chúng ta chứng minh được rằng: n 1 n 1 cn 2 c1 15. 2 ,n 1. + Từ các kết quả trên, ta có hệ phương trình: a 2a 10.3n 1 n 1 n n 1 n 1 n 1 an 2.3 3. 2 . an 1 3an 15. 2 n 1 n 1 Do đó số hạng tổng quát của dãy số an là an 2.3 3. 2 ,n 1. Vậy suy ra a14 3164070 . Vậy phương án đúng là A. Nhận xét: Với kết quả trong ví dụ này, chúng ta có thể trả lời các câu hỏi trắc nghiệm khách quan dưới đây: Cho dãy số an xác định bởi a1 5;a2 0 và an 2 an 1 6an ,n 1. Hãy chọn phương án trả lời đúng trong mỗi câu hỏi sau đây. Câu 1. Tính số hạng thứ năm của dãy số an . A. a5 210 . B. a5 66 . C. a5 36 . D. a5 360 . Câu 2. Số hạng tổng quát của dãy số an là:; n 1 n 1 n n A. an 2.3 3. 2 . B. an 2.3 3. 2 . n 1 n 1 n n C. an 2.3 3.2 . D. an 2.3 3.2 . STUDY TIP Dãy số an xác định bởi a1 a,a2 b và an 2 .an 1 .an , với mọi n 1, trong đó phương 2 trình t t  0 có hai nghiệm phân biệt là t1 và t2 . Khi đó số hạng tổng quát của dãy số n 1 n 1 m1 m2 a an là an m1.t1 m2.t2 , trong đó m1,m2 thỏa mãn hệ phương trình . m1.t1 m2.t2 b 2 Ví dụ 7. Cho dãy số an xác định bởi a1 3 và an 1 an n 3n 4,n ¥ * . Số 1391 là số hạng thứ mấy của dãy số đã cho? A. 18. B. 17 . C. 20 . D. 19 Đáp án A. Lời giải Từ hệ thức truy hồi của dãy số an ta có: 3 2 2 n 6n 17n 21 a a 12 22 n 1 3 1 2 n 1 4 n 1 a . n 1 n 3 n3 6n2 17n 21 Suy ra số hạng tổng quát của dãy số a là a . n n 3
  15. Giải phương trình an 1391 ta được n 18 Vậy phương án đúng là A. STUDY TIP Dãy số an xác định bởi a1 a và an 1 an f n ,n 1. n 1 Số hạng tổng quát của dãy số an được tính theo công thức: an a1  f i . i 1 1 Ví dụ 8. Cho dãy số a xác định bởi a 2 và a a 1 ,n 1. Mệnh đề nào dưới đây là n 1 n 1 2 n đúng? A. an là một dãy số giảm và bị chặn. B. an là một dãy số tăng và bị chặn. C. an là một dãy số giảm và không bị chặn dưới. D. an là một dãy số tăng và không bị chặn trên. Đáp án A Lời giải 3 5 Ta có a 2 a a . Do đó ta loại được các phương án B và D. 1 2 2 3 4 1 1 1 + Ta có an a 1 nên an 1 an an an 1 n 1 a2 a1 0,n ¥ *. 2 n 1 2 2 Suy ra an 1 an ,n 1 nên an là dãy số giảm. + Vì an là một dãy số giảm nên dãy số này bị chặn trên bởi a1 2 . 1 Ta có 1 a a a 0,n 1 a 1,n 1. 2 n n 1 n n Vậy phương án đúng là A. C. BÀI TẬP RÈN LUYỆN KỸ NĂNG Dạng 1: Bài tập về xác định số hạng của dãy số 2n 3 n 1 Câu 1. Cho dãy số xn có xn ,n ¥ *. Mệnh đề nào dưới đây là đúng ? n 1 2n 5 2n 3 2n 5 2n 1 n 1 n n n 1 A. xn 1 . B. xn 1 . C. xn 1 . D. xn 1 . n 1 n 2 n 2 n 1 n 2n Câu 2. Cho dãy số y xác định bởi y sin2 cos . Bốn số hạng đầu của dãy số đó là: n n 4 3 1 3 1 1 3 1 1 3 3 1 1 1 A. 0, , , . B. 1, , , . C. 1, , , . D. 0, , , . 2 2 2 2 2 2 2 2 2 2 2 2 Câu 3. Cho dãy số yn xác định bởi y1 y2 1 và yn 2 yn 1 yn ,n ¥ *. Năm số hạng đầu tiên của dãy số đã cho là: A. 1,1,2,4,7 . B. 2,3,5,8,11. C. 1,2,3,5,8 . D. 1,1,2,3,5 . Câu 4. Cho dãy số un xác định bởi u1 1 và un 2.n.un 1 với mọi n 2 . Mệnh đề nào dưới đây là đúng ? 10 10 10 10 10 10 A. u11 2 .11!. B. u11 2 .11!. C. u11 2 .11 . D. u11 2 .11 .