Trắc nghiệm Đại số Lớp 10 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 3: Hàm số bậc hai - Câu hỏi chưa phân dạng - Mức độ 3 - Năm học 2017-2018 (Có đáp án)

doc 2 trang xuanthu 580
Bạn đang xem tài liệu "Trắc nghiệm Đại số Lớp 10 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 3: Hàm số bậc hai - Câu hỏi chưa phân dạng - Mức độ 3 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • doctrac_nghiem_dai_so_lop_10_tach_tu_de_thi_thu_thpt_quoc_gia_c.doc

Nội dung text: Trắc nghiệm Đại số Lớp 10 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 3: Hàm số bậc hai - Câu hỏi chưa phân dạng - Mức độ 3 - Năm học 2017-2018 (Có đáp án)

  1. Câu 4770. [0D2-3.0-3] Cho hàm số y f x ax2 bx c . Biểu thức f x 3 3 f x 2 3 f x 1 có giá trị bằng A. ax2 bx c . B. ax2 bx c . C. ax2 bx c . D. ax2 bx c . Lời giải Chọn D f x 3 a x 3 2 b x 3 c ax2 6a b x 9a 3b c . f x 2 a x 2 2 b x 2 c ax2 4a b x 4a 2b c . f x 1 a x 1 2 b x 1 c ax2 2a b x a b c . f x 3 3 f x 2 3 f x 1 ax2 bx c . Câu 4778. [0D2-3.0-3] Parabol P có phương trình y x2 đi qua A, B có hoành độ lần lượt là 3 và 3 . Cho O là gốc tọa độ. Khi đó: A. Tam giác AOB là tam giác nhọn. B. Tam giác AOB là tam giác đều. C. Tam giác AOB là tam giác vuông. D. Tam giác AOB là tam giác có một góc tù. Lời giải Chọn B Parabol P : y x2 đi qua A, B có hoành độ 3 và 3 suy ra A 3;3 và B 3;3 là hai điểm đối xứng nhau qua Oy . Vậy tam giác AOB cân tại O . Gọi I là giao điểm của AB và Oy IOA vuông tại I nên IO 3 tan I·AO 3 I·AO 60 . Vậy AOB là tam giác đều. IA 3 Cách khác: 2 OA OB 2 3 , AB 3 3 3 3 2 2 3 . Vậy OA OB AB nên tam giác AOB là tam giác đều. Câu 5003. [0D2-3.0-3] Parabol P : y x2 đi qua hai điểm A, B có hoành độ lần lượt là 3 và 3 . Cho O làm gốc tọa độ. Khi đó: A. OAB là tam giác nhọn. B. OAB là tam giác đều. C. OAB là tam giác vuông. D. OAB là tam giác có một góc tù. Lời giải Chọn B  OA 3; 3 OA 3 9 2 3 A 3; 3  Ta có OB 3; 3 OB 3 9 2 3 . B 3; 3  AB 2 3;0 AB 2 3
  2. Câu 611. [0D2-3.0-3] Cho M P : y x2 và A 3;0 . Để AM ngắn nhất thì: A. M 1;1 . B. M 1;1 . C. M 1; 1 . D. M 1; 1 . Lời giải Chọn A Vì M P : y x2 nên ta đặt AM m 3 2 m4 m4 m2 6m 9 M m;m2 2 m4 2m2 1 3 m2 2m 1 5 m2 1 3 m 1 2 5 5 Dấu " " xảy ra khi và chỉ khi m 1 M 1;1 .