Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 1 - Chủ đề 1: Hàm số lượng giác - Dạng 5: Tập giá trị và Max, Min của hàm số lượng giác - Mức độ 4 - Năm học 2017-2018 (Có đáp án)

doc 3 trang xuanthu 220
Bạn đang xem tài liệu "Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 1 - Chủ đề 1: Hàm số lượng giác - Dạng 5: Tập giá trị và Max, Min của hàm số lượng giác - Mức độ 4 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • doctrac_nghiem_dai_so_lop_11_tach_tu_de_thi_thu_thpt_quoc_gia_c.doc

Nội dung text: Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 1 - Chủ đề 1: Hàm số lượng giác - Dạng 5: Tập giá trị và Max, Min của hàm số lượng giác - Mức độ 4 - Năm học 2017-2018 (Có đáp án)

  1. Câu 4045. [1D1-1.5-4] Cho x, y, z 0 và x y z . Tìm giá trị lớn nhất của 2 y 1 tan x.tan y 1 tan y.tan z 1 tan z.tan x A. ymax 1 2 2 . B. ymax 3 3 . C. ymax 4 . D. ymax 2 3 . Lời giải Chọn D tan x tan y 1 Ta có x y z x y z tan x y tan z 2 2 2 1 tan x.tan y tan z tan x.tan z tan y.tan z 1 tan x.tan y tan x.tan z tan y.tan z tan x.tan y 1 Ta thấy tan x.tan z; tan y.tan z; tan x.tan y lần lượt xuất hiện trong hàm số đề cho dưới căn thức, tương tự như ví dụ 8, áp dụng bất đẳng thức Bunyakovsky cho 6 số ta có: 1. 1 tan x.tan y 1. 1 tan y.tan z 1. 1 tan z.tan x 12 12 12 . 1.tan x.tan z 1.tan y.tan z 1.tan x.tan y 3 3 tan x.tan z tan y.tan z tan x.tan y 2 3 Vậy ymax 2 3 . 3 1 tan2 x Câu 4126. [1D1-1.5-4] Hàm số y 4cot2 2x đạt giá trị nhỏ nhất là tan x A. 0 . B. 3 2 3 . C. 2 2 2 . D. 1. Lời giải Chọn D 1 tan2 x Ta có cot 2x 2 tan x 2 3 1 tan2 x Từ đó suy ra y 3cot2 2x 3cot2 2x 2 3 cot 2x 2 tan x 2 3 cot 2x 1 1 1,x ¡ . 1 Vậy min y 1 cot 2x . 3 Câu 4127. [1D1-1.5-4] Hàm số y 2cos x sin x đạt giá trị lớn nhất là 4 A. 5 2 2 . B. 5 2 2 . C. 5 2 2 . D. 5 2 2 . Lời giải Chọn C Ta có 1 1 y 2cos x sin x 2cos x 2 sin x 2cos x sin x cos x 4 2 4 2 1 1 2 cos x sin x . 2 2 2 2 2 1 1 2 Ta có y 2 y 5 2 2 . 2 2
  2. Do đó ta có 5 2 2 y 5 2 2 . Vậy giá trị lớn nhất của hàm số là 5 2 2 . Câu 4128. [1D1-1.5-4] Giá trị nhỏ nhất của hàm số y sin4 x cos4 x sin x cos x là 9 5 4 A. . B. . C. 1. D. . 8 4 3 Lời giải Chọn A Ta có y sin4 x cos4 x sin x cos x y 1 2sin2 x cos2 x sin x cos x . 1 1 y 1 sin2 2x sin 2x 2 2 2 2 1 1 1 9 1 1 9 y 1 sin 2x y sin 2x . 2 2 4 8 2 2 8 1 Dấu bằng xảy ra khi sin 2x . 2 Câu 4129. [1D1-1.5-4] Giá trị nhỏ nhất của hàm số y sin x cos x cos x sin x là A. 0 . B. 2 . C. 4 2 . D. 6 . Lời giải Chọn A Ta có sin x cos x cos x sin x 2 sin x cos x sin x cos x 1 1 y 2 sin 2x sin 2x 0 . Dấu bằng xảy ra khi và chỉ khi sin 2x 0 . 2 2 Câu 4229: [1D1-1.5-4] Số giờ có ánh sáng của một thành phố A trong ngày thứ t của năm 2017 được cho bởi một hàm số y 4sin t 60 10 , với t Z và 0 t 365. Vào ngày nào trong năm thì thành phố 178 A có nhiều giờ ánh sáng mặt trời nhất ?. A. 28 tháng 5 . B. 29 tháng 5 . C. 30 tháng 5 . D. 31 tháng 5 . Lời giải. Chọn B. Vì sin t 60 1 y 4sin t 60 10 14 . 178 178 Ngày có ánh nắng mặt trời chiếu nhiều nhất y 14 sin t 60 1 t 60 k2 t 149 356k . 178 178 2 149 54 Mà 0 t 365 0 149 356k 365 k . 356 89 Vì k ¢ nên k 0 . Với k 0 t 149 tức rơi vào ngày 29 tháng 5 (vì ta đã biết tháng 1 và 3 có 31 ngày, tháng 4 có 30 ngày, riêng đối với năm 2017 thì không phải năm nhuận nên tháng 2 có 28 ngày hoặc dựa vào dữ kiện 0 t 365 thì ta biết năm này tháng 2 chỉ có 28 ngày).
  3. Câu 4230: [1D1-1.5-4] Hằng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh được tính tại thời điểm t (giờ) trong một ngày bởi công thức t h 3cos 12 . Mực nước của kênh cao nhất khi: 7 8 4 A. t 13 (giờ). B. t 14 (giờ). C. t 15 (giờ). D. t 16 (giờ). Lời giải. Chọn B. Mực nước của kênh cao nhất khi h lớn nhất t t cos 1 k2 với 0 t 24 và k ¢ . 8 4 8 4 Lần lượt thay các đáp án, ta được đáp án B thỏa mãn. t Vì với t 14 thì 2 (đúng với k 1 ¢ ). 8 4