Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Bài 4: Biến cố xác suất của biến cố - Mức độ 4.1 - Năm học 2017-2018 (Có đáp án)

doc 1 trang xuanthu 2660
Bạn đang xem tài liệu "Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Bài 4: Biến cố xác suất của biến cố - Mức độ 4.1 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • doctrac_nghiem_dai_so_lop_11_tach_tu_de_thi_thu_thpt_quoc_gia_c.doc

Nội dung text: Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Bài 4: Biến cố xác suất của biến cố - Mức độ 4.1 - Năm học 2017-2018 (Có đáp án)

  1. Câu 23: [DS11.C2.4.BT.d] Một hộp đựng 11 tấm thẻ được đánh số từ 1 đến 11. Chọn ngẫu nhiên 6 tấm thẻ. Gọi P là xác suất để tổng số ghi trên 6 tấm thẻ ấy là một số lẻ. Khi đó P bằng: 100 115 1 118 A. . B. . C. .D. . 231 231 2 231 Lời giải Chọn D 6 n() C11 462 . Gọi A :”tổng số ghi trên 6 tấm thẻ ấy là một số lẻ”. Từ 1 đến 11 có 6 số lẻ và 5 số chẵn. Để có tổng là một số lẻ ta có 3 trường hợp. 5 Trường hợp 1: Chọn được 1 thẻ mang số lẻ và 5 thẻ mang số chẵn có: 6.C5 6 cách. 3 3 Trường hợp 2: Chọn được 3 thẻ mang số lẻ và 3 thẻ mang số chẵn có: C6 .C5 200 cách. 5 Trường hợp 2: Chọn được 5 thẻ mang số lẻ và 1 thẻ mang số chẵn có: C6 .5 30 cách. 236 118 Do đó n(A) 6 200 30 236 . Vậy P(A) . 462 231 Câu 43: [DS11.C2.4.BT.d] (THPT Phan Chu Trinh - ĐăkLăk - 2017 - 2018 - BTN) Một nhóm 10 học sinh gồm 6 nam trong đó có Quang, và 4 nữ trong đó có Huyền được xếp ngẫu nhiên vào 10 ghế trên một hàng ngang để dự lễ sơ kết năm học. Xác suất để xếp được giữa 2 bạn nữ gần nhau có đúng 2 bạn nam, đồng thời Quang không ngồi cạnh Huyền là: 109 1 1 109 A. . B. . C. . D. . 30240 280 5040 60480 Lời giải Chọn B Ta có: n  10!. Giả sử các ghế được đánh số từ 1 đến 10. Để có cách xếp sao cho giữa 2 bạn nữ có đúng 2 bạn nam thì các bạn nữ phải ngồi ở các ghế đánh số 1, 4 , 7 , 10. Có tất cả số cách xếp chỗ ngồi loại này là: 6!.4! cách. Ta tính số cách sắp xếp chỗ ngồi sao cho Huyền và Quang ngồi cạnh nhau Nếu Huyền ngồi ở ghế 1 hoặc 10 thì có 1 cách xếp chỗ ngồi cho Quang. Nếu Huyền ngồi ở ghế 4 hoặc 7 thì có 2 cách xếp chỗ ngồi cho Quang. Do đó, số cách xếp chỗ ngồi cho Quang và Huyền ngồi liền nhau là 2 2.2 6 . Suy ra, số cách xếp chỗ ngồi cho 10 người sao cho Quang và Huyền ngồi liền nhau là 6.3!.5!. Gọi A: “ Giữa 2 bạn nữ gần nhau có đúng 2 bạn nam, đồng thời Quang không ngồi cạnh Huyền”. n A 12960 1 n A 4!.6! 6.3!.5! 12960 P A . n  10! 280 1 Vậy xác suất cần tìm là . 280