Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 1: Quy tắc cộng. Quy tắc nhân - Dạng 5: Đếm số (kết hợp cộng, trừ, nhân) - Mức độ 2 - Năm học 2017-2018 (Có đáp án)
Bạn đang xem tài liệu "Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 1: Quy tắc cộng. Quy tắc nhân - Dạng 5: Đếm số (kết hợp cộng, trừ, nhân) - Mức độ 2 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
trac_nghiem_dai_so_lop_11_tach_tu_de_thi_thu_thpt_quoc_gia_c.doc
Nội dung text: Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 1: Quy tắc cộng. Quy tắc nhân - Dạng 5: Đếm số (kết hợp cộng, trừ, nhân) - Mức độ 2 - Năm học 2017-2018 (Có đáp án)
- Câu 4: [1D2-1.5-2] Có bao nhiêu chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,8 . A. 252 B. 520 C. 480 D. 368 Lời giải Chọn B. Gọi x abcd; a,b,c,d 0,1,2,4,5,6,8 . Cách 1: Tính trực tiếp Vì x là số chẵn nên d 0,2,4,6,8 . TH 1: d 0 có 1 cách chọn d . Với mỗi cách chọn d ta có 6 cách chọn a 1,2,4,5,6,8 Với mỗi cách chọn a,d ta có 5 cách chọn b 1,2,4,5,6,8 \ a Với mỗi cách chọn a,b,d ta có 4 cách chọn c 1,2,4,5,6,8 \ a,b Suy ra trong trường hợp này có 1.6.5.4 120 số. TH 2: d 0 d 2,4,6,8 có 4 cách chọn d Với mỗi cách chọn d , do a 0 nên ta có 5 cách chọn a 1,2,4,5,6,8 \ d. Với mỗi cách chọn a,d ta có 5 cách chọn b 1,2,4,5,6,8 \ a Với mỗi cách chọn a,b,d ta có 4 cách chọn c 1,2,4,5,6,8 \ a,b Suy ra trong trường hợp này có 4.5.5.4 400 số. Vậy có tất cả 120 400 520 số cần lập. Cách 2: Tính gián tiếp ( đếm phần bù) Gọi A { số các số tự nhiên có bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,8 } B { số các số tự nhiên lẻ có bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,8 } C { số các số tự nhiên chẵn có bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,8 } Ta có: C A B . Dễ dàng tính được: A 6.6.5.4 720 . Ta đi tính B ? x abcd là số lẻ d 1,5 d có 2 cách chọn. Với mỗi cách chọn d ta có 5 cách chọn a (vì a 0,a d ) Với mỗi cách chọn a,d ta có 5 cách chọn b Với mỗi cách chọn a,b,d ta có 4 cách chọn c Suy ra B 2.5.5.4 200 Vậy C 520 . Câu 17: [1D2-1.5-2] Từ các số 1,2,3 có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau: A. 15. B. 20 . C. 72 . D. 36 Lời giải Chọn A. TH1: số có 1 chữ số thì có 3 cách. TH2: số có 2 chữ số và mỗi số có các chữ số khác nhau thì có3.2 6 số. TH3: số có 3 chữ số và mỗi số có các chữ số khác nhau thì có3.2.1 6 số Vậy có3 6 6 15số.
- Câu 21: [1D2-1.5-2] Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3. A. 12. B. 16. C. 17 . D. 20 . Lời giải Chọn C. Số các số tự nhiên lớn nhất, nhỏ hơn 100 chia hết cho 2 và 3 là 96 . Số các số tự nhiên nhỏ nhất, nhỏ hơn 100 chia hết cho 2 và 3 là 0 . 96 0 Số các số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3 là 1 17 nên chọn C . 6 Câu 24: [1D2-1.5-2] Cho tập A 0,1,2,3,4,5,6. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số và chia hết cho 5. A. 660 B. 432 C. 679 D. 523 Lời giải Chọn A. Gọi x abcde là số cần lập, e 0,5,a 0 e 0 e có 1 cách chọn, cách chọn a,b,c,d : 6.5.4.3 Trường hợp này có 360 số e 5 e có một cách chọn, số cách chọn a,b,c,d : 5.5.4.3 300 Trường hợp này có 300 số Vậy có 660 số thỏa yêu cầu bài toán. Câu 26: [1D2-1.5-2] Cho tập hợp số: A 0,1,2,3,4,5,6.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3. A. 114 B. 144 C. 146 D. 148 Lời giải Chọn B. Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là {0,1,2,3}, {0,1,2,6}, {0,2,3,4}, {0,3,4,5}, {1,2,4,5}, {1,2,3,6}, 1,3,5,6. Vậy số các số cần lập là: 4(4! 3!) 3.4! 144 số. Câu 3638. [1D2-1.5-2] Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần: A. 5 . B. 15. C. 55 . D. 10. Lời giải Chọn D Với một cách chọn 9 chữ số từ tập 0,1,2,3,4,5,6,7,8,9 ta có duy nhất một cách xếp chúng theo thứ tự giảm dần. Ta có 10 cách chọn 9 chữ số từ tập 0,1,2,3,4,5,6,7,8,9 Do đó có 10 số tự nhiên cần tìm. nên chọn D . Câu 3034. [1D2-1.5-2] Từ các số 1,2,3 có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau: A.15 .B. 20 . C. 72 . D. 36 Lời giải Chọn A. TH1: số có 1 chữ số thì có 3 cách. TH2: số có 2 chữ số và mỗi số có các chữ số khác nhau thì có3.2 6 số.
- TH3: số có 3 chữ số và mỗi số có các chữ số khác nhau thì có3.2.1 6 số Vậy có3 6 6 15số. BÀI 2: HOÁN VỊ – CHỈNH HỢP – TỔ HỢP Câu 16: [1D2-1.5-2] (Tổng Hợp Đề SGD Nam Định - 2017 - 2018 - BTN) Có bao nhiêu số tự nhiên chẵn gồm 3 chữ số khác nhau? A. 500 .B. 328 .C. 360 .D. 405 . Hướng dẫn giải Chọn B Gọi số tự nhiên chẵn cần tìm có dạng abc , c 0;2;4;6;8. 2 Xét các số có dạng ab0 có tất cả A9 72 số thỏa yêu cầu bài toán. Xét các số dạng abc , c 2;4;6;8 có tất cả: 4.8.8 256 số thỏa yêu cầu bài toán. Vậy số các số tự nhiên chẵn gồm 3 chữ số khác nhau là: 72 256 328 số. Câu 672. [1D2-1.5-2] Từ các số 1,2,3 có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau: A.15.B. 20 . C. 72 . D.36 Lờigiải ChọnA. TH1: số có 1 chữ số thì có 3 cách. TH2: số có 2 chữ số và mỗi số có các chữ số khác nhau thì có3.2 6 số. TH3: số có 3 chữ số và mỗi số có các chữ số khác nhau thì có3.2.1 6 số Vậy có3 6 6 15số. BÀI2:HOÁNVỊ–CHỈNHHỢP–TỔHỢP