Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 2: Hoán vị. Chỉnh hợp. Tổ hợp - Câu hỏi chưa phân dạng - Mức độ 3 - Năm học 2017-2018 (Có đáp án)
Bạn đang xem tài liệu "Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 2: Hoán vị. Chỉnh hợp. Tổ hợp - Câu hỏi chưa phân dạng - Mức độ 3 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
trac_nghiem_dai_so_lop_11_tach_tu_de_thi_thu_thpt_quoc_gia_c.doc
Nội dung text: Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 2: Hoán vị. Chỉnh hợp. Tổ hợp - Câu hỏi chưa phân dạng - Mức độ 3 - Năm học 2017-2018 (Có đáp án)
- Câu 921. [1D2-2.0-3] Với số nguyên k và n sao cho 1 k n . Khi đó n 2k 1 A. .C k là một số nguyên với mọi k và n . k 1 n n 2k 1 B. .C k là một số nguyên với mọi giá trị chẵn của k và n . k 1 n n 2k 1 C. .C k là một số nguyên với mọi giá trị lẻ của k và n . k 1 n n 2k 1 k k 1 D. .Cn là một số nguyên nếu . k 1 n 1 Lời giải. Chọn A Ta có : n 2k 1 n k k 1 n k n k n! .C k .C k .C k C k . C k k 1 n k 1 n k 1 n n k 1 k!. n k ! n n! C k C k 1 C k k 1 !. n k 1 ! n n n k 1 Do 1 k n k 1 n Cn luôn tồn tại với mọi số nguyên k và n sao cho 1 k n . k 1 k k 1 k Mặt khác Cn và Cn là các số nguyên dương nên Cn Cn cũng là một số nguyên. Câu 3548. [1D2-2.0-3] Với số nguyên k và n sao cho 1 k n . Khi đó n 2k 1 A. .C k là một số nguyên với mọi k và n . k 1 n n 2k 1 B. .C k là một số nguyên với mọi giá trị chẵn của k và n . k 1 n n 2k 1 C. .C k là một số nguyên với mọi giá trị lẻ của k và n . k 1 n n 2k 1 k k 1 D. .Cn là một số nguyên nếu . k 1 n 1 Lời giải. Chọn A Ta có n 2k 1 n k k 1 n k n k n! .C k .C k .C k C k . C k k 1 n k 1 n k 1 n n k 1 k!. n k ! n n! C k C k 1 C k k 1 !. n k 1 ! n n n k 1 Do 1 k n k 1 n Cn luôn tồn tại với mọi số nguyên k và n sao cho 1 k n . k 1 k k 1 k Mặt khác Cn và Cn là các số nguyên dương nên Cn Cn cũng là một số nguyên. Câu 3671. [1D2-2.0-3] Sau bữa tiệc, mỗi người bắt tay một lần với mỗi người khác trong phòng. Có tất cả 66 người lần lượt bắt tay. Hỏi trong phòng có bao nhiêu người:
- A. 11.B. 12. C. 33 .D. 66 . Lời giải Chọn B Cứ hai người sẽ có 1 lần bắt tay. 2 n! n 12 Khi đó Cn 66 66 n n 1 132 n 12 n ¥ n 2 !.2! n 11 Câu 3684. [1D2-2.0-3] Có tất cả 120 cách chọn 3 học sinh từ nhóm n (chưa biết) học sinh. Số n là nghiệm của phương trình nào sau đây? A. n n 1 n 2 120.B. n n 1 n 2 720 . C. n n 1 n 2 120 .D. n n 1 n 2 720 . Lời giải Chọn D n! n n 1 n 2 Chọn 3 trong n học sinh có C3 . n n 3 !.3! 6 3 Khi đó Cn 120 n n 1 n 2 720 . Câu 439. [1D2-2.0-3] Với số nguyên k và n sao cho 1 k n. Khi đó n 2k 1 A. .C k là một số nguyên với mọi k và n k 1 n n 2k 1 B. .C k là một số nguyên với mọi giá trị chẵn của k và n . k 1 n n 2k 1 C. .C k là một số nguyên với mọi giá trị lẻ của k và n . k 1 n n 2k 1 k k 1 D. .Cn là một số nguyên nếu . k 1 n 1 Lời giải Chọn A Ta có n 2k 1 n k k 1 n k n k n! .C k .C k .C k C k . C k k 1 n k 1 n k 1 n n k 1 k!. n k ! n n! C k C k 1 C k . k 1 !. n k 1 ! n n n k 1 Do 1 k n k 1 n Cn luôn tồn tại với mọi số nguyên k và n sao cho 1 k n . k 1 k k 1 k Mặt khác Cn và Cn là các số nguyên dương nên Cn Cn cũng là một số nguyên. Câu 3224. [1D2-2.0-3] Với số nguyên k và n sao cho 1 k n. Khi đó n 2k 1 A. .C k là một số nguyên với mọi k và n. k 1 n n 2k 1 B. .C k là một số nguyên với mọi giá trị chẵn của k và n. k 1 n n 2k 1 C. .C k là một số nguyên với mọi giá trị lẻ của k và n. k 1 n
- n 2k 1 k k 1 D. .Cn là một số nguyên nếu . k 1 n 1 Lời giải Chọn A Ta có n 2k 1 n k k 1 n k n k n! .C k .C k .C k C k . C k k 1 n k 1 n k 1 n n k 1 k!. n k ! n n! C k C k 1 C k k 1 !. n k 1 ! n n n k 1 Do 1 k n k 1 n Cn luôn tồn tại với mọi số nguyên k và n sao cho 1 k n. k 1 k k 1 k Mặt khác Cn và Cn là các số nguyên dương nên Cn Cn cũng là một số nguyên.