Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 2: Hoán vị. Chỉnh hợp. Tổ hợp - Dạng 1: Đếm số (chỉ dùng một loại P hoặc A hoặc C) - Mức độ 3 - Năm học 2017-2018 (Có đáp án)
Bạn đang xem tài liệu "Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 2: Hoán vị. Chỉnh hợp. Tổ hợp - Dạng 1: Đếm số (chỉ dùng một loại P hoặc A hoặc C) - Mức độ 3 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
trac_nghiem_dai_so_lop_11_tach_tu_de_thi_thu_thpt_quoc_gia_c.doc
Nội dung text: Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 2: Hoán vị. Chỉnh hợp. Tổ hợp - Dạng 1: Đếm số (chỉ dùng một loại P hoặc A hoặc C) - Mức độ 3 - Năm học 2017-2018 (Có đáp án)
- Câu 30: [1D2-2.1-3] (THPT Chuyên Hùng Vương - Phú Thọ - Lần 1 - 2018 - BTN) Trong kho đèn trang trí đang còn 5 bóng đèn loại I, 7 bóng đèn loại II, các bóng đèn đều khác nhau về màu sắc và hình dáng. Lấy ra 5 bóng đèn bất kỳ. Hỏi có bao nhiêu khả năng xảy ra số bóng đèn loại I nhiều hơn số bóng đèn loại II? A. 246 .B. 3480 .C. 245 .D. 3360 . Lời giải Chọn A Có 3 trường hợp xảy ra: TH1: Lấy được 5 bóng đèn loại I: có 1 cách 4 1 TH2: Lấy được 4 bóng đèn loại I, 1 bóng đèn loại II: có C5 .C7 cách 3 2 TH3: Lấy được 3 bóng đèn loại I, 2 bóng đèn loại II: có C5 .C7 cách 4 1 3 2 Theo quy tắc cộng, có 1 C5 .C7 C5 .C7 246 cách Câu 26. [1D2-2.1-3](THPT Xuân Hòa-Vĩnh Phúc- Lần 1- 2018- BTN) Từ các chữ số 0 , 1, 2 , 3 , 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau và không chia hết cho 5 ? A. 72 .B. 120.C. 54 .D. 69 . Lời giải Chọn C Gọi số cần tìm dạng: abcd , a 0 . 3 Số các số tự nhiên có 4 chữ số khác nhau: 4.A4 96 số. 3 2 Số các số tự nhiên có 4 chữ số khác nhau chia hết cho 5: A4 3.A3 42 . Vậy số các số tự nhiên có 4 chữ số khác nhau không chia hết cho 5 là: 96 42 54 số. Câu 36. [1D2-2.1-3] (THPT Lê Hồng Phong - Nam Định - Lần 1 - 2017 - 2018 - BTN) Cho các chữ số 0 , 1, 2 , 3 , 4 , 5 . Từ các chữ số đã cho lập được bao nhiêu số tự nhiên chẵn có 4 chữ số và các chữ số đôi một bất kỳ khác nhau. A. 160. B. 156. C. 752 . D. 240 . Lời giải Chọn B Gọi số cần tìm là: abcd (với b,c,d 0;1;2;3;4;5 , a 1;2;3;4;5 ). Trường hợp 1: Chọn d 0 , nên có 1 cách chọn. Chọn a 1,2,3,4,5 nên có 5 cách chọn. Chọn b có 4 cách chọn. Chọn c có 3 cách chọn. Suy ra, có 1.5.4.3 60 số.
- Trường hợp 2: Chọn d 2,4, nên có 2 cách chọn. Chọn a 0 nên có 4 cách chọn. Chọn b có 4 cách chọn. Chọn c có 3 cách chọn. Suy ra, có 2.4.4.3 96 số. Vậy có tất cả: 60 96 156 số. Câu 36: [1D2-2.1-3] (Lương Văn Chánh - Phú Yên – 2017 - 2018 - BTN) Có 10 đội bóng thi đấu theo thể thức vòng tròn một lượt, thắng được 3 điểm, hòa 1 điểm, thua 0 điểm. Kết thúc giải đấu, tổng cộng số điểm của tất cả 10 đội là 130. Hỏi có bao nhiêu trận hòa ? A. 7 .B. 8 .C. 5 .D. 6 . Lời giải Chọn C 2 Vì 10 đội bóng thi đấu theo thể thức vòng tròn một lượt nên số trận đấu là C10 45 (trận). Gọi số trận hòa là x , số không hòa là 45 x (trận). Tổng số điểm mỗi trận hòa là 2 , tổng số điểm của trận không hòa là 3 45 x . Theo đề bài ta có phương trình 2x 3 45 x 130 x 5 . Vậy có 5 trận hòa. Câu 49: [1D2-2.1-3] (THPT Phan Đình Phùng - Hà Tĩnh - Lần 1 - 2017 - 2018 - BTN) Số cách chia 12 phần quà cho 3 bạn sao cho ai cũng có ít nhất hai phần quà là A. 28 .B. 36 .C. 56 .D. 72 . Lời giải Chọn A + Chia trước cho mỗi học sinh một phần quà thì số phần quà còn lại là 9 phần quà. + Chia 9 phần quà cho 3 học sinh sao cho học sinh nào cũng có ít nhất một phần quà: Đặt 9 phần quà theo một hàng ngang, giữa các phần quà sẽ có 8 khoảng trống, chọn 2 khoảng trống trong 8 khoảng trống đó để chia 9 phần quà còn lại thành 3 phần quà mà mỗi phần có ít 2 2 nhất một phần quà, có C8 . Vậy tất cả có C8 28 cách chia. Câu 29: [1D2-2.1-3] (Chuyên Lương Thế Vinh – Hà Nội – Lần 2 – 2018 – BTN) Trong các số nguyên từ 100 đến 999 , số các số mà các chữ số của nó tăng dần hoặc giảm dần (kể từ trái qua phải) bằng: A. 204 . B. 120. C. 168. D. 240 . Lời giải Chọn A Số nguyên cần lập có 3 chữ số đôi một khác nhau. Xét hai trường hợp: + TH1: Các chữ số tăng dần từ trái qua phải. Khi đó 3 chữ số được chọn từ tập A 1;2;3;4;5;6;7;8;9
- Với một cách chọn 3 chữ số từ tập này ta có duy nhất một cách xếp chúng theo thứ tự tăng dần. 3 Do đó số các số lập được trong trường hợp này là: C9 . + TH2: Các chữ số giảm dần từ trái qua phải. Khi đó 3 chữ số được chọn từ tập B 0;1;2;3;4;5;6;7;8;9 Với một cách chọn 3 chữ số từ tập này ta có duy nhất một cách xếp chúng theo thứ tự giảm dần. 3 Do đó số các số lập được trong trường hợp này là: C10 . 3 3 Vậy số các số cần tìm là: C9 C10 204 số. Câu 44: [1D2-2.1-3] (Chuyên Lương Thế Vinh – Hà Nội – Lần 2 – 2018 – BTN) Từ 2 chữ số 1 và 8 lập được bao nhiêu số tự nhiên có 8 chữ số sao cho không có 2 chữ số 1 đứng cạnh nhau? A. 54 . B. 110. C. 55 . D. 108 Lời giải Chọn C TH1: Có 8 chữ số 8 . Có 1 số TH2: Có 1 chữ số 1, 7 chữ số 8 . Có 8 cách xếp chữ số 1 nên có 8 số. TH3: Có 2 chữ số 1, 6 chữ số 8 . Xếp 6 số 8 ta có 1 cách. Từ 6 số 8 ta có có 7 chỗ trống để xếp 2 số 1. 2 Nên ta có: C7 21 số. TH4: Có 3 chữ số 1, 5 chữ số 8 . Tương tự TH3, từ 5 chữ số 8 ta có 6 chỗ trống để xếp 3 chữ số 1. 3 Nên có: C6 20 số. TH5: Có 4 chữ số 1, 4 chữ số 8 . Từ 4 chữ số 8 ta có 5 chỗ trống để xếp 4 chữ số 1. 4 Nên có: C5 5 . Vậy có: 1 8 21 20 5 55 số. Câu 1339: [1D2-2.1-3] Cho các chữ số 0,1,2,3,4,5 . Từ các chữ số đã cho lập được bao nhiêu số chẵn có 4 chữ số và các chữ số đó phải khác nhau: A. 160. B. 156. C. 752 . D. 240 . Lời giải Chọn B Gọi số cần tìm có dạng: abcd a 0 . TH1. d 0 Chọn d : có 1 cách 3 Chọn abc : có A5 cách 3 Theo quy tắc nhân, có 1.A5 60 (số) TH2. d 0 Chọn d : có 2 cách d 2;4 Chọn a : có 4 cách a 0,a d
- 2 Chọn bc : có A4 cách 2 Theo quy tắc nhân, có 2.4.A4 96 (số) Theo quy tắc cộng, vậy có 60 96 156 (số). Câu 1340: [1D2-2.1-3] Từ các số của tập A 0,1,2,3,4,5,6 có thể lập được bao nhiêu số chẵn gồm 5 chữ số đôi một khác nhau trong đó có hai chữ số lẻ và hai chữ số lẻ đứng cạnh nhau. A. 360. B. 362. C. 345. D. 368 Lời giải Chọn A. Vì có 3 số lẻ là 1,3,5, nên ta tạo được 6 cặp số kép: 13,31,15,51,35,53 Gọi A là tập các số gồm 4 chữ số được lập từ X 0,13,2,4,6 . Gọi A1, A2 , A3 tương ứng là số các số tự nhiên lẻ gồm 4 chữ số khác nhau được lập từ các chữ số của tập X 0,13,2,4,6 và 13 đứng ở vị trí thứ nhất, thứ hai và thứ ba. 3 Ta có: A1 A4 24; A2 A3 3.3.2 18 nên A 24 2.18 60 Vậy số các số cần lập là: 6.60 360 số. Câu 1344: [1D2-2.1-3] Từ các số 0,1,2,7,8,9 tạo được bao nhiêu số chẵn có 5 chữ số khác nhau? A. 120. B. 216 . C. 312 . D. 360 . Lời giải Chọn C Gọi abcde là số cần tìm. 4 Nếu e 0 , chọn 4 trong 5 số còn lại sắp vào các vị trí a,b,c,d có A5 120 cách. Nếu e 0 , chọn e có 2 cách. Chọn a 0 và a e có 4 cách. 3 Chọn 3 trong 4 số còn lại sắp vào các vị trí b,c,d có A4 cách. 4 3 Như vậy có: A5 2.4.A4 312 số. Câu 1346: [1D2-2.1-3] Từ các chữ số 0,1,2,3,4,5,6 có thể lập được bao nhiêu số chẵn, mỗi số có 5 chữ số khác nhau trong đó có đúng hai chữ số lẻ và 2 chữ số lẻ đứng cạnh nhau? A. 360. B. 280. C. 310. D. 290 Lời giải Chọn A Gọi A là số tự nhiên có hai chữ số lẻ khác nhau lấy từ các số 0,1,2,3,4,5,6 số cách chọn được 2 A là A3 6 . Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa A và ba trong 4 chữ số 0;2;4;6. Gọi abcd;a,b,c,d {A,0,2,4,6} là số thỏa mãn yêu cầu bài toán. 3 *TH1: Nếu a Acó 1 cách chọn a và A4 chọn b,c,d . * TH 2: a Acó 3 cách chọn a 2 + Nếu b A có 1 cách chọn b và A3 cách chọn c,d . 2 + Nếu c Acó 1 cách chọn c và A3 cách chọn b,d . 2 3 2 2 Vậy có A3 A4 3 1.A3 1.A3 360 số thỏa mãm yêu cầu bài toán. Câu 1347: [1D2-2.1-3] Có bao nhiêu số tự nhiên gồm 7 chữ số, biết rằng chữ số 2 có mặt hai lần, chữ số ba có mặt ba lần và các chữ số còn lại có mặt nhiều nhất một lần? A. 26460. B. 27901. C. 27912. D. 26802 Lời giải Chọn A
- Ta đếm các số có 7 chữ số được chọn từ các số 2,2,3,3,3,a,b với a,b 0,1,4,5,6,7,8,9 , kể cả số 0 đứng đầu. Ta có được: 7! số như vậy. Tuy nhiên khi hoán vị hai số 2 cho nhau hoặc các số 3 cho nhau thì ta được số không đổi do đó có tất cả 7! 420 số. 2!.3! 2 2 Vì có A8 cách chọn a,b nên ta có: 480.A8 26880 số. Ta đếm các số có 6 chữ số được chọn từ các số 2,2,3,3,3, x với x 1,4,5,6,7,8,9 . 6! Tương tự như trên ta tìm được A1 420 số 2!.3! 7 Vậy số các số thỏa yêu cầu bài toán: 26460 . Câu 1348: [1D2-2.1-3] Từ các số của tập A {1,2,3,4,5,6,7} lập được bao nhiêu số tự nhiên gồm 1. Năm chữ số đôi một khác nhau A. 2520. B. 2510. C. 2398. D. 2096 2. Sáu chữ số khác nhau và chia hết cho 5. A. 720. B. 710. C. 820. D. 280 3. Năm chữ số đôi một khác nhau, đồng thời hai chữ số 2 và 3 luôn đứng cạnh nhau A. 720. B. 710. C. 820. D. 280 4. Bảy chữ số, trong đó chữ số 2 xuất hiện đúng ba lần. A. 31203. B. 30240. C. 31220. D. 32220 Lời giải 1. Mỗi số cần lập thỏa yêu cầu bài toán sẽ ứng với mỗi chỉnh hợp chập 5 của 7 phần tử. Do đó, có 5 A7 2520 . Chọn A 2. Gọi số cần lập là x a1a2 a6 Vì x chia hết cho 5 nên a6 5 a6 có một cách chọn 5 Số cách chọn các chữ số a1,a2 , ,a5 chính bằng số chỉnh hợp chập 5 của 6 phân tử và bằng A6 . 5 Vậy số các số cần lập là 1.A6 720 Chọn A 4 3. Đặt x 23 . Số các số cần lập có dạng abcd với a,b,c,d 1, x,4,5,6,7. Có A6 360 số như vậy Mặt khác khi hoán vị hai số 2 và 3 ta được thêm một số thỏa yêu cầu bài toán. Vậy có 360.2 720 số thỏa yêu cầu bài toán. Chọn A 4. Xét các số tự nhiên có bảy chữ số được lập từ 1,2,2,2,3,4,5,6,7 7 Ta thấy có A9 số như vậy. Tuy nhiên khi hoán vị vị trí của ba số 2 cho nhau thì số thu được không thay đổi. Vậy có A7 9 30240 số thỏa yêu cầu bài toán. 3! Chọn A Câu 1349: [1D2-2.1-3] Từ các chữ số của tập hợp A 0,1,2,3,4,5,6 lập được bao nhiêu số tự nhiên gồm 1. 5 chữ số A. 14406. B. 13353. C. 15223. D. 14422
- 2. 4 chữ số đôi một khác nhau A. 418. B. 720. C. 723. D. 731 3. 4 chữ số đôi một khác nhau và là số lẻ A. 300. B. 324. C. 354. D. 341 4. 5 chữ số đôi một khác nhau và là số chẵn. A. 1260. B. 1234. C. 1250. D. 1235 Lời giải 1. Gọi x abcde với a,b,c,e A;a 0 Để lập x ta chọn các số a,b,c,d,e theo tứ thự sau Chọn a : Vì a A,a 0 nên ta có 6 cách chọn a Vì b A và b có thể trùng với a nên với mỗi cách chọn a ta có 7 cách chọn b Tương tự: với mỗi cách chọn a,b có 7 cách chọn c với mỗi cách chọn a,b,c có 7 cách chọn d với mỗi cách chọn a,b,c,d có 7 cách chọn e Vậy theo quy tắc nhân ta có: 6.7.7.7.7 14406 số thỏa yêu cầu bài toán. Chọn A 2. Gọi x abcd là số cần lập với a,b,d,c A đôi một khác nhau và a 0 . Ta chọn a,b,c,d theo thứ tự sau Chọn a : Vì a A,a 0 nên có 6 cách chọn a Với mỗi cách chọn a ta thấy mỗi cách chọn b,c,d chính là một cách lấy ba phần tử của tập A \ a và xếp chúng theo thứ tự, nên mỗi cách chọn b,c,d ứng với một chỉnh hợp chập 3 của 6 phần tử 3 Suy ra số cách chọn b,c,d là: A6 3 Theo quy tắc nhân ta có: 6.A6 720 số thỏa yêu cầu bài toán. Chọn B 3. Gọi x abcd là số cần lập với a,b,c,d A đôi một khác nhau, a 0 . Vì x là số lẻ nên d 1,3,5 d có 3 cách chọn. Với mỗi cách chọn d ta có a A \ 0,d a có 5 cách chọn 2 Với mỗi cách chọn a,d ta có A5 cách chọn bc 2 Theo quy tắc nhân ta có: 3.5.A5 300 số thỏa yêu cầu bài toán. Chọn A 4. Gọi x abcde là số cần lập với a,b,c,d,e A đôi một khác nhau và a 0 . Vì x là số lẻ nên e 0,2,4,6 . Ta xét các trường hợp sau e 0 e có 1 cách chọn Vì a 0 a có 6 cách chọn 3 Số cách chọn các chữ số còn lại: A5 3 Do đó trường hợp này có tất cả 1.6.A5 360 số e 0 e có 3 cách chọn Với mỗi cách chọn e ta có a A \ 0,e a có 5 cách chọn 3 Số cách chọn các số còn lại là: A5 3 Do đó trường hợp này có tất cả 3.5.A5 900 số Vậy có cả thảy 360 900 1260 số thỏa yêu cầu bài toán. Chọn A
- Câu 1350: [1D2-2.1-3] Từ các số 1,2,3,4,5,6,7,8,9 có thể lập được bao nhiêu số tự nhiên có, mỗi số có 6 chữ số khác nhau và tổng các chữ số ở hàng chục, hàng trăm, hàng ngàn bằng 8. A. 1300. B. 1400. C. 1500. D. 1600 Lời giải Chọn B Gọi n a1a2a3a4a5a6 là một số thỏa yêu cầu bài toán thì a3 a4 a5 8 . Có hai bộ 3 số có tổng bằng 8 trong các số 1,2, ,8,9 là: 1;2;5 và 1;3;4 3 Nếu a3;a4 ;a5 1;2;5 thì a3 ,a4 ,a5 có 3! cách chọn và a1,a2 ,a6 có A6 cách chọn suy ra có 3 3!A6 720 số thỏa yêu cầu. Nếu a3;a4 ;a5 1;2;5 thì cũng có 720 số thỏa yêu cầu. Vậy có 720 720 1400 số thỏa yêu cầu. Câu 1351: [1D2-2.1-3] Hỏi có thể lập được bao nhiêu số tự nhiên có 4 chữ số sao cho trong mỗi số đó, chữ số hàng ngàn lớn hơn hàng trăm, chữ số hàng trăm lớn hơn hàng chục và chữ số hàng chục lớn hơn hàng đơn vị. A. 221. B. 209. C. 210. D. 215 Lời giải Chọn C Gọi x a1a2a3a4 với 9 a1 a2 a3 a4 0 là số cần lập. X 0; 1; 2; ; 8; 9 . Từ 10 phần tử của X ta chọn ra 4 phần tử bất kỳ thì chỉ lập được 1 số. A. Nghĩa là không có hoán vị hay là một tổ hợp chập 4 của 10. 4 Vậy có C10 210 số. Câu 3647. [1D2-2.1-3] Cho 6 chữ số 4,5,6,7,8,9 . số các số tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đó: A.120 .B. 60 . C. 256 . D. 216 . Lời giải Chọn B Gọi số cần tìm có dạng : abc . Chọn c : có 3 cách c 4;6;8 2 Chọn ab : có A5 cách 2 Theo quy tắc nhân, có 3.A5 60 (số). Câu 3650. [1D2-2.1-3] Cho các chữ số 0,1,2,3,4,5 . Từ các chữ số đã cho lập được bao nhiêu số chẵn có 4 chữ số và các chữ số đó phải khác nhau: A.160 .B. 156 . C. 752 . D. 240 . Lời giải Chọn B Gọi số cần tìm có dạng : abcd a 0 . TH1. d 0 Chọn d : có 1 cách 3 Chọn abc : có A5 cách
- 3 Theo quy tắc nhân, có 1.A5 60 (số) TH2. d 0 Chọn d : có 2 cách d 2; 4 Chọn a : có 4 cách a 0,a d 2 Chọn bc : có A4 cách 2 Theo quy tắc nhân, có 2.4.A4 96 (số) Theo quy tắc cộng, vậy có 60 96 156 (số). Câu 3651. [1D2-2.1-3] Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau lấy từ các số 0,1,2 ,3,4,5 . A. 60 .B. 80 .C. 240 . D. 600 . Lời giải Chọn D Gọi số cần tìm có dạng : abcde a 0 . Chọn a : có 5 cách a 0 4 Chọn bcde : có A5 cách 4 Theo quy tắc nhân, có 5.A5 600 (số) Câu 36: [1D2-2.1-3] (THPT Yên Lạc - Vĩnh Phúc- Lần 3 - 2017 - 2018 - BTN) Cho tam giác đều H có cạnh bằng 8 . Chia tam giác này đều thành 64 tam giác đều có cạnh bằng 1 bởi các đường thẳng song song với các cạnh của tam giác đều đã cho. Gọi S là tập hợp các đỉnh của 64 tam giác đều có cạnh bằng 1. Chọn Ngẫu nhiên 4 đỉnh của tập S . Tính xác suất để 4 đỉnh chọn được là bốn đỉnh của một hình bình hành nằm trong miền trong tam giác đều H . 2 6 2 2 A. .B. .C. .D. . 473 935 1419 935 Lời giải Chọn A Cách 1: Ta thấy có 3 loại hình bình hành dựa vào cách chọn phương của hai cạnh của hình bình hành. Số hình bình hành của mỗi loại là bằng nhau nên chỉ cần tính một loại rồi nhân với 3 .
- Dựng thêm một đường thẳng song song với cạnh đáy và cách cạnh đáy một khoảng bằng khoảng cách giữa hai đường thẳng song song kề nhau, tạo thành một tam giác đều mở rộng như hình vẽ. Ta chia cạnh mới thành 9 phần bằng nhau bởi 8 , cộng thêm 2 đầu mút nữa thành 10 điểm. Các điểm được đánh số từ trái sang phải từ 1 đến 10. Khi đó, với 1 hình bình hành có hai cạnh song song với hai cạnh bên tương ứng với bốn số 1 a b c d 10 theo quy tắc sau: Nối dài các cạnh của hình bình hành, cắt các cạnh mới tại 4 điểm có số thứ tự là a , b , c , d . Ví dụ với hình bình hành màu đỏ trên ta có bộ 2,5,7,9 . Ngược lại nếu có một bộ số 1 a b c d 10 ta sẽ kẻ các đường thẳng từ điểm a , b song song với cạnh bên trái và từ c , d song song với cạnh bên phải giao nhau ra một hình bình hành. Vậy số hình bình hành loại này là số cách lấy ra bốn số phân biệt a;b;c;d từ 10 số tự nhiên 4 1,2,3, ,10 và ta được C10 210 . 4 Vậy kết quả là 3.C10 630 hình bình hành. Ta thấy có 1 2 3 9 45 giao điểm giữa các đường thẳng nên số phần tử của không gian 4 mẫu là n C45 . 4 3C10 2 Vậy xác suất cần tính là P A 4 . C45 473 Cách 2: Để chọn được một hình bình hành mà 4 đỉnh chọn được là bốn đỉnh của một hình bình hành nằm trong miền trong tam giác đều H ta làm như sau: Chọn 2 trong 7 điểm trên một cạnh ( trừ hai điểm đầu mút của cạnh), cùng với hai điểm trong 5 điểm nằm tương ứng trên một cạnh trong hai cạnh còn lại của tam giác ( trừ mỗi đầu cạnh đi 2 điểm). Qua 4 điểm này có 4 đường thẳng tương ứng của đầu bài sẽ cắt nhau tạo thành một hình bình hành thỏa mãn bài toán. 2 2 Vì vài trò các cạnh như nhau nên số hình bình hành thu được là: C7 .C5 .3 630 (hình). Ta thấy có 1 2 3 9 45 giao điểm giữa các đường thẳng nên số phần tử của không gian 4 mẫu là n C45 . 4 3C10 2 Vậy xác suất cần tính là P A 4 . C45 473
- Câu 658. [1D2-2.1-3] Cho các chữ số 0,1,2,3,4,5 . Từ các chữ số đã cho lập được bao nhiêu số chẵn có 4 chữ số và các chữ số đó phải khác nhau: A.160.B. 156. C. 752 . D. 240 . Lờigiải ChọnB Gọi số cần tìm có dạng : abcd a 0 . TH1. d 0 Chọn d : có 1 cách 3 Chọn abc : có A5 cách 3 Theo quy tắc nhân, có 1.A5 60 (số) TH2. d 0 Chọn d : có 2 cách d 2;4 Chọn a : có 4 cách a 0,a d 2 Chọn bc : có A4 cách 2 Theo quy tắc nhân, có 2.4.A4 96 (số) Theo quy tắc cộng, vậy có 60 96 156 (số). Câu 698. [1D2-2.1-3] Từ các số 0,1,2,7,8,9 tạo được bao nhiêu số chẵn có 5 chữ số khác nhau? A.120.B. 216 . C.312 .D. 360 . Lờigiải ChọnC. Gọi abcde là số cần tìm. 4 Nếu e 0 , chọn 4 trong 5 số còn lại sắp vào các vị trí a,b,c,d có A5 120 cách. Nếu e 0 , chọn e có 2 cách. Chọn a 0 và a e có 4 cách. 3 Chọn 3 trong 4 số còn lại sắp vào các vị trí b,c,d có A4 cách. 4 3 Như vậy có: A5 2.4.A4 312 số. Câu 699. [1D2-2.1-3] Từ các số 0,1,2,7,8,9 tạo được bao nhiêu số lẻ có 5 chữ số khác nhau? A. 288 .B. 360 .C. 312 .D. 600 . Lờigiải ChọnA. Gọi abcde là số cần tìm. Chọn e có 3 cách. Chọn a 0 và a e có 4 cách. 3 Chọn 3 trong 4 số còn lại sắp vào b,c,d có A4 cách. 3 Vậy có 3.4.A4 288 số.