Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 2: Hoán vị. Chỉnh hợp. Tổ hợp - Dạng 6: Chọn người, vật (kết hợp P-A-C) - Mức độ 3 - Năm học 2017-2018 (Có đáp án)

doc 7 trang xuanthu 280
Bạn đang xem tài liệu "Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 2: Hoán vị. Chỉnh hợp. Tổ hợp - Dạng 6: Chọn người, vật (kết hợp P-A-C) - Mức độ 3 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • doctrac_nghiem_dai_so_lop_11_tach_tu_de_thi_thu_thpt_quoc_gia_c.doc

Nội dung text: Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 2: Hoán vị. Chỉnh hợp. Tổ hợp - Dạng 6: Chọn người, vật (kết hợp P-A-C) - Mức độ 3 - Năm học 2017-2018 (Có đáp án)

  1. Câu 41: [1D2-2.6-3] (THPT Chuyên Vĩnh Phúc - Lần 3 - 2017 - 2018 - BTN) Có bao nhiêu số tự nhiên có bẩy chữ số khác nhau từng đôi một, trong đó chữ số 2 đứng liền giữa hai chữ số 1 và3 . A. 3204 số. B. 249 số. C. 2942 số. D. 7440 số. Lời giải Chọn D Vì chữ số 2 đứng liền giữa hai chữ số 1 và3 nên số cần lập có bộ ba số 123 hoặc 321. TH1: Số cần lập có bộ ba số 123. Nếu bộ ba số 123 đứng đầu thì số có dạng 123abcd . 4 4 Có A7 840 cách chọn bốn số a , b , c , d nên có A7 840 số. Nếu bộ ba số 123 không đứng đầu thì số có 4 vị trí đặt bộ ba số 123. 3 Có 6 cách chọn số đứng đầu và có A6 120 cách chọn ba số b , c , d . 3 Theo quy tắc nhân có 6.4.A6 2880 số Theo quy tắc cộng có 840 2880 3720 số. TH2: Số cần lập có bộ ba số 321. Do vai trò của bộ ba số 123 và321 như nhau nên có 2 840 2880 7440 . Câu 37: [1D2-2.6-3] (ĐỀ ĐOÀN TRÍ DŨNG - HÀ HỮU HẢI - LẦN 7 - 2018) Tính giá trị của biểu 0 1 1 2 2016 2017 2017 2018 thức: P C2017C2018 C2017C2018 C2017 C2018 C2017 C2018 . 2018 2017 2017 2018 A. P C4036 B. P C4035 C. P C4034 D. P C4034 Câu 47: [1D2-2.6-3] (ĐỀ ĐOÀN TRÍ DŨNG - HÀ HỮU HẢI - LẦN 7 - 2018) Tính giá trị của biểu 2017 2016 2 1 thức: P 0 1 2015 2016 ? A2017 A2017 A2017 A2017 1 1 1 A. P 2017 B. P 2017 C. P 2018 D. 2018! 2017! 2017! 1 P 2018 2018!
  2. Câu 50. [1D2-2.6-3] (THPT CHUYÊN VĨNH PHÚC - LẦN 1 - 2017 - 2018 - BTN) Trong một hình tứ diện ta tô màu các đỉnh, trung điểm các cạnh, trọng tâm các mặt và trọng tâm tứ diện. Chọn ngẫu nhiên 4 điểm trong số các điểm đã tô màu, tính xác suất để 4 điểm được chọn là bốn đỉnh của một tứ diện. 188 1009 245 136 A. . B. . C. . D. . 273 1365 273 195 Lời giải Chọn A Cách 1: 4 Không gian mẫu: n  C15 . Tính biến cố bù như sau: Xét số cách chọn 4 đỉnh không tạo thành tứ diện. Có 2 trường hợp: + TH1: Chọn 3 điểm thẳng hàng, có 25 cách. Chọn điểm còn lại, có 12 cách. Vậy có 25.12=300 cách. + TH2: Chọn 4 điểm thuộc 1 mặt mà không có 3 điểm nào thẳng hàng. - Có 10 mặt chứa 7 điểm: Mỗi mặt 11 cách chọn. Suy ra có 110 cách. - Có 15 mặt chứa 5 điểm, mỗi mặt 1 cách chọn. Suy ra có 15 cách. Tổng: 300 + 110 + 15 = 425 cách. 425 188 Vậy, xác suất để 4 điểm được chọn là bốn đỉnh của một tứ diện là: 1 4 . C15 273 Cách 2: 4 Không gian mẫu: n  C15 . Tính biến cố bù như sau: Xét các bộ bốn điểm cùng nằm trên một mặt phẳng gồm các bộ thuộc các mặt phẳng sau: 1) Mặt phẳng chứa 1 cạnh và trung điểm của cạnh đối diện, suy ra có 7 điểm thuộc mặt 4 phẳng loại này. Có C7 bộ mỗi mặt và 6 mặt như vậy. 6C 4 Vậy có 7 (bộ). 2) Mặt phẳng chứa mặt của tứ diện, suy ra có 7 điểm thuộc mỗi mặt và 4 mặt loại này. 4C 4 Vậy có 7 (bộ). 3) Mặt phẳng chứa 2 đường trung bình của tứ diện, suy ra có 5 điểm thuộc mặt này và 3 mặt loại này. 3C 4 Vậy có 5 (bộ). 4) Mặt phẳng chứa 1 đỉnh của tứ diện và 1 đường trung bình của mặt đối diện, suy ra có 5 điểm thuộc mỗi mặt (đỉnh, 2 trung điểm, cạnh và 2 trọng tâm) và có 12 mặt loại này. 12C 4 Vậy có 5 (bộ).
  3. Vậy, xác suất để 4 điểm được chọn là bốn đỉnh của một tứ diện là: 4 4 4 4 6.C7 4C7 3C5 12C5 188 1 4 . C15 273 Câu 42: [1D2-2.6-3] (THPT Mộ Đức 2 - Quảng Ngãi - 2017 - 2018 - BTN)Có bao nhiêu số tự nhiên có 30 chữ số, sao cho trong mỗi số chỉ có mặt hai chữ số 0 và 1, đồng thời số chữ số 1 có mặt trong số tự nhiên đố luôn là một số lẻ? A. 227 . B. 229 .C. 228 . D. 3.227 . Lời giải Chọn C Giả sử số cần lập có dạng a1a2 a30 , với ai 0;1 , i 1,2, ,30 và a1 1. Do a1 1 nên số chữ số 1 trong 29 số còn lại phải là một số chẵn. Gọi k là số chữ số 1 trong 29 số còn lại thì bài toán trở thành đếm số cách sắp xếp k k chữ số 1 này vào 29 vị trí nên có C29 cách. 0 2 28 Vậy có S C29 C29 C29 số thỏa mãn. 0 1 29 29 S T C29 C29 C29 2 Đặt T C1 C3 C 29 thì nên 29 29 29 0 1 29 29 S T C29 C29 C29 1 1 0 S T 228 . Ta có f x 4x3 4x 4x x2 1 . Để f x 0 x 0 . Câu 45: [1D2-2.6-3] (THPT Đức Thọ - Hà Tĩnh - Lần 1 - 2017 - 2018 - BTN) Trong một giải cờ vua gồm nam và nữ vận động viên. Mỗi vận động viên phải chơi hai ván với mỗi động viên còn lại. Cho biết có 2 vận động viên nữ và cho biết số ván các vận động viên chơi nam chơi với nhau hơn số ván họ chơi với hai vận động viên nữ là 84. Hỏi số ván tất cả các vận động viên đã chơi? A. 168. B. 156. C. 132. D. 182. Hướng dẫn giải Chọn D Gọi số vận động viên nam là n . 2 Số ván các vận động viên nam chơi với nhau là 2.Cn n n 1 . Số ván các vận động viên nam chơi với các vận động viên nữ là 2.2.n 4n .
  4. Vậy ta có n n 1 4n 84 n 12 . 2 Vậy số ván các vận động viên chơi là 2C14 182 . Câu 40: [1D2-2.6-3] Có 3 nam và 3 nữ cần xếp ngồi vào một hàng ghế. Hỏi có mấy cách xếp sao cho: a) Nam, nữ ngồi xen kẽ? A. 72 B. 74 C. 76 D. 78 b) Nam, nữ ngồi xen kẽ và có một người nam A, một người nữ B phải ngồi kề nhau? A. 40 B. 42 C. 46 D. 70 c) Nam, nữ ngồi xen kẽ và có một người nam C, một người nữ D không được ngồi kề nhau? A. 32 B. 30 C. 35 D. 70 Lời giải Chọn A. Chọn A. Chọn A. a) Có 6 cách chọn một người tuỳ ý ngồi vào chỗ thứ nhất. Tiếp đến, có 3 cách chọn một người khác phái ngồi vào chỗ thứ 2. Lại có 2 cách chọn một người khác phái ngồi vào chỗ thứ 3, có 2 cách chọn vào chỗ thứ 4, có 1 cách chọn vào chỗ thứ 5, có 1 cách chọn vào chỗ thứ 6. Vậy có: 6.3.2.2.1.1 72 cách. b) Cho cặp nam nữ A, B đó ngồi vào chỗ thứ nhất và chỗ thứ hai, có 2 cách. Tiếp đến, chỗ thứ ba có 2 cách chọn, chỗ thứ tư có 2 cách chọn, chỗ thứ năm có 1 cách chọn, chỗ thứ sáu có 1 cách chọn. Bây giờ, cho cặp nam nữ A, B đó ngồi vào chỗ thứ hai và chỗ thứ ba. Khi đó, chỗ thứ nhất có 2 cách chọn, chỗ thứ tư có 2 cách chọn, chỗ thứ năm có 1 cách chọn, chỗ thứ sáu có 1 cách chọn. Tương tự khi cặp nam nữ A, B đó ngồi vào chỗ thứ ba và thứ tư, thứ tư và thứ năm, thứ năm và thứ sáu. Vậy có: 5.2.2.2.1.1. 40 cách. c) Số cách chọn để cặp nam nữ đó không ngồi kề nhau bằng số cách chọn tuỳ ý trừ số cách chọn để cặp nam nữ đó ngồi kề nhau. Vậy có: 72 40 32 cách Câu 1371: [1D2-2.6-3] Một Thầy giáo có 10 cuốn sách Toán đôi một khác nhau, trong đó có 3 cuốn Đại số, 4 cuốn Giải tích và 3 cuốn Hình học. Ông muốn lấy ra 5 cuốn và tặng cho 5 học sinh sao cho sau khi tặng mỗi loại sách còn lại ít nhất một cuốn. Hỏi có bao nhiêu cách tặng. A. 23314. B. 32512. C. 24480. D. 24412 Lời giải Chọn C 5 Số cách lấy 5 cuốn sách và đem tặng cho 5 học sinh: S A10 30240 cách. 2 Số cách chọn sao cho không còn sách Đại số: S1 C7 .5! 2520 cách 1 Số cách chọn sao cho không còn sách Giải tích: S2 C6.5! 720 cách 2 Số cách chọn sao cho không còn sách Hình học: S3 C7 .5! 2520 cách. Vậy số cách tặng thỏa yêu cầu bài toán:: S S1 S2 S3 24480 cách tặng.
  5. Câu 1374: [1D2-2.6-3] Một nhóm học sinh gồm 15 nam và 5 nữ. Người ta muốn chọn từ nhóm ra 5 người để lập thành một đội cờ đỏ sao cho phải có 1 đội trưởng nam, 1 đội phó nam và có ít nhất 1 nữ. Hỏi có bao nhiêu cách lập đội cờ đỏ. A. 131444. B. 141666. C. 241561. D. 111300. Lời giải Chọn D Vì trong 5 người được chọn phải có ít nhất 1 nữ và ít nhất phải có 2 nam nên số học sinh nữ gồm 1 hoặc 2 hoặc 3 nên ta có các trường hợp sau: chọn 1 nữ và 4 nam. +) Số cách chọn 1 nữa: 5 cách 2 +) Số cách chọn 2 nam làm đội trưởng và đội phó: A15 2 +) Số cách chọn 2 nam còn lại: C13 2 2 Suy ra có 5A15.C13 cách chọn cho trường hợp này. chọn 2 nữ và 3 nam. 2 +) Số cách chọn 2 nữ: C5 cách. 2 +) Số cách chọn 2 nam làm đội trưởng và đội phó: A15 cách. +) Số cách chọn 1 còn lại: 13 cách. 2 2 Suy ra có 13A15.C5 cách chọn cho trường hợp này. Chọn 3 nữ và 2 nam. 3 +) Số cách chọn 3 nữ: C5 cách. 2 +) Số cách chọn 2 làm đội trưởng và đội phó: A15 cách. 2 3 Suy ra có A15.C5 cách chọn cho trường hợp 3. 2 2 2 2 2 3 Vậy có 5A15.C13 13A15.C5 A15.C5 111300 cách. Câu 1375: [1D2-2.6-3] Một Thầy giáo có 5 cuốn sách Toán, 6 cuốn sách Văn và 7 cuốn sách anh văn và các cuốn sách đôi một khác nhau. Thầy giáo muốn tặng 6 cuốn sách cho 6 học sinh. Hỏi Thầy giáo có bao nhiêu cách tặng nếu: 1. Thầy giáo chỉ muốn tặng hai thể loại A. 2233440. B. 2573422. C. 2536374. D. 2631570 2. Thầy giáo muốn sau khi tặng xong mỗi thể loại còn lại ít nhất một cuốn. A. 13363800. B. 2585373. C. 57435543. D. 4556463 Lời giải 6 1. Tặng hai thể loại Toán, Văn có: A11 cách 6 Tặng hai thể loại Toán, Anh Văn có: A12 cách 6 Tặng hai thể loại Văn, Anh Văn có: A13 cách 6 6 6 Số cách tặng: A11 A12 A13 2233440 Chọn A 2. Số cách tặng hết sách Toán: 5!.13 1560 Số cách tặng hết sách Văn: 6! 720 6 Số cách tặng thỏa yêu cầu bài toán: A18 1560 720 13363800 . Chọn A
  6. Câu 3688. [1D2-2.6-3] Ông và bà An cùng có 6 đứa con đang lên máy bay theo một hàng dọc . Có bao nhiêu cách xếp hàng khác nhau nếu ông An hay bà An đứng ở đầu hoặc cuối hàng: A. 720 .B. 1440 .C. 18720.D. 40320 . Lời giải Chọn C. Ta dùng phần bù. Sắp 8 người vào 8 vị trí theo hàng dọc có 8! cách sắp xếp. 2 Sắp ông và bà An vào 2 trong 6 vị trí (trừ vị trí đầu và cuối hàng) có A6 cách. Sắp 6 người con vào 6 vị trí còn lại có 6! cách. 2 Vậy có 8! A6 .6! 18720 cách sắp xếp. Câu 3689. [1D2-2.6-3] Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau? A. 5!.7!.B. 2.5!.7!.C. 5!.8!.D. 12 ! . Lời giải Chọn C. Sắp 5 quyển văn có 5! cách sắp xếp. Sắp 7 quyển toán và bộ 5 quyển văn có 8! cách sắp xếp. Vậy có 5!.8! cách sắp xếp. Câu 46: [1D2-2.6-3] (Chuyên Quang Trung - BP - Lần 4 - 2017 - 2018) Cho tập A 1;2;3; ;2018 và các số a,b,c A. Hỏi có bao nhiêu số tự nhiên có dạng abc sao cho a b c và a b c 2016 . A. 2027070 B. 2026086 C. 337681 D. 20270100 Lời giải Chọn C Xét phương trình a b c 2016 . 2 Ta biết phương trình trên có C2015 nghiệm nguyên dương. Xét các cặp nghiệm 3 số trùng nhau : a b c 672 . Xét các cặp nghiệm có a b 2a c 2016 có 1006 cặp (trừ cặp 672,672,672 ). Tương tự ta suy ra có 1006.3 cặp nghiệm có 2 trong 3 số trùng nhau. C 2 3.1006 1 Vậy số tập hợp gồm ba phần tử có tổng bằng 2016 là 2015 337681. 3! Mỗi tập hợp này tương ứng với một bộ abc thỏa mãn bài toán.
  7. Câu 3058. [1D2-2.6-3] Ông và bà An cùng có 6 đứa con đang lên máy bay theo một hàng dọc . Có bao nhiêu cách xếp hàng khác nhau nếu ông An hay bà An đứng ở đầu hoặc cuối hàng: A. 720 .B. 1440. C. 18720.D. 40320 . Lời giải Chọn C. Ta dùng phần bù. Sắp 8 người vào 8 vị trí theo hàng dọc có 8! cách sắp xếp. 2 Sắp ông và bà An vào 2 trong 6 vị trí (trừ vị trí đầu và cuối hàng) có A6 cách. Sắp 6 người con vào 6 vị trí còn lại có 6! cách. 2 Vậy có 8! A6 .6! 18720 cách sắp xếp.