Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 2: Hoán vị. Chỉnh hợp. Tổ hợp - Dạng 7: Bài toán liên quan hình học - Mức độ 4 - Năm học 2017-2018 (Có đáp án)
Bạn đang xem tài liệu "Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 2: Hoán vị. Chỉnh hợp. Tổ hợp - Dạng 7: Bài toán liên quan hình học - Mức độ 4 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
trac_nghiem_dai_so_lop_11_tach_tu_de_thi_thu_thpt_quoc_gia_c.doc
Nội dung text: Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 2: Hoán vị. Chỉnh hợp. Tổ hợp - Dạng 7: Bài toán liên quan hình học - Mức độ 4 - Năm học 2017-2018 (Có đáp án)
- Câu 47: [1D2-2.7-4] (THPT Chuyên Hùng Vương - Phú Thọ - Lần 1 - 2018 - BTN) Một khối lập phương có độ dài cạnh là 2cm được chia thành 8 khối lập phương cạnh 1cm . Hỏi có bao nhiêu tam giác được tạo thành từ các đỉnh của khối lập phương cạnh 1cm . A. 2876 .B. 2898 . C. 2915 .D. 2012 . Lời giải Chọn A Có tất cả 27 điểm. 3 Chọn 3 điểm trong 27 có C27 2925. Có tất cả 8.2 6.2 4.2 4 3 2 2 2 49 bộ ba điểm thẳng hàng. Vậy có 2925 49 2876 tam giác. Câu 49: [1D2-2.7-4] (THPT Chuyên Quốc Học Huế - Lần 2 -2018 - BTN) Cho hình lập phương, mỗi cặp đỉnh của nó xác định một đường thẳng. Trong các đường thẳng đó, tìm số các cặp đường thẳng (không tính thứ tự) không đồng phẳng và không vuông góc với nhau. A. 132. B. 96 . C. 192. D. 108. Lời giải Chọn B B C D A B' C' A' D' Chia làm ba loại gồm: 12 cạnh; 12 đường chéo phụ là đường chéo của các hình vuông là mặt của hình lập phương và 4 đường chéo chính của hình lập phương. + Nhận thấy các cạnh hoặc đồng phẳng, hoặc là vuông góc nên không có cặp cạnh nào thỏa mãn yêu cầu bài toán. Cả bốn đường chéo chính cũng vậy. + Chọn 1 cạnh bất kỳ, tương ứng với cạnh đó có đúng 2 đường chéo chính, và 4 đường chéo phụ kết hợp với cạnh tạo thành cặp đường thẳng thỏa bài toán, do đó có 12. 2 4 72 cặp. + Đường chéo chính và đường chéo phụ bất kỳ không thỏa mãn bài toán.
- + Chọn một đường chéo phụ bất kỳ, có đúng 4 đường chéo phụ khác kết hợp với đường chéo phụ đã chọn tạo thành cặp đường thẳng thỏa mãn yêu cầu bài toán. Vì số lần đếm gấp đôi nên số cặp 12.4 đường chép phụ thỏa bài toán là : 24 cặp. 2 Vậy có 72 24 96 cặp đường thẳng thỏa bài toán. Câu 1413: [1D2-2.7-4] Trong mặt phẳng cho n điểm, trong đó không có 3 điểm nào thẳng hàng và trong tất cả các đường thẳng nối hai điểm bất kì, không có hai đường thẳng nào song song, trùng nhau hoặc vuông góc. Qua mỗi diểm vẽ các đường thẳng vuông góc với các đường thẳng được xác định bởi 2 trong n 1 điểm còn lại. Số giao điểm của các đường thẳng vuông góc giao nhau là bao nhiêu? 2 2 3 2 2 3 A. 2Cn(n 1)(n 2) n(Cn 1 1) 5Cn . B. Cn(n 1)(n 2) 2 n(Cn 1 1) 5Cn . 2 2 2 2 3 2 2 3 C. 3Cn(n 1)(n 2) 2 n(Cn 1 1) 5Cn . D. Cn(n 1)(n 2) n(Cn 1 1) 5Cn . 2 2 Lời giải Chọn D 2 2 Gọi n điểm đã cho là A1, A2 , , An . Xét một điểm cố định, khi đó có Cn 1 đường thẳng nên sẽ có Cn 1 đường thẳng vuông góc đi qua điểm cố định đó. n(n 1)(n 2) Do đó có nC 2 đường thẳng vuông góc nên có n 1 2 2 Cn(n 1)(n 2) giao điểm (tính cả những giao điểm trùng nhau). 2 Ta chia các điểm trùng nhau thành 3 loại: 2 (n 1)(n 2) 2 * Qua một điểm có Cn 1 nên ta phải trừ đi n Cn 1 1 điểm. 2 * Qua A1, A2 , A3 có 3 đường thẳng cùng vuông góc với A4 A5 và 3 đường thẳng này song song với nhau, nên 3 ta mất 3 giao điểm, do đó trong TH này ta phải loại đi: 3Cn . * Trong mỗi tam giác thì ba đường cao chỉ có một giao điểm, nên ta mất 2 điểm cho mỗi tam giác, do đó 3 trường hợp này ta phải trừ đi 2Cn . 2 2 3 Vậy số giao điểm nhiều nhất có được là: Cn(n 1)(n 2) n(Cn 1 1) 5Cn . 2 Câu 3590: [1D2-2.7-4] Cho đa giác đều n đỉnh, n ¥ và n 3 . Tìm n biết rằng đa giác đã cho có 135 đường chéo. A. n 15. B. n 27 . C. n 8 . D. n 18. Lời giải Chọn D 2 + Tìm công thức tính số đường chéo: Số đoạn thẳng tạo bởi n đỉnh là Cn , trong đó có n cạnh, 2 suy ra số đường chéo là Cn n . 2 + Đa giác đã cho có 135 đường chéo nên Cn n 135. n! + Giải PT: n 135, n 2 !2! 2 n 18 nhan n ¥ , n 2 n 1 n 2n 270 n 3n 270 0 n 18 . n 15 loai Câu 3670. [1D2-2.7-4] Nếu một đa giác đều có 44 đường chéo, thì số cạnh của đa giác là: A. 11.B. 10. C. 9 .D. 8 . Lời giải Chọn A Cứ hai đỉnh của đa giác n n ¥ ,n 3 đỉnh tạo thành một đoạn thẳng (bao gồn cả cạnh đa giác và đường chéo).
- n! Khi đó số đường chéo là: C 2 n 44 n 44 n n 2 !.2! n 11 n n 1 2n 88 n 11 (vì n ¥ ). n 8 Câu 3677. [1D2-2.7-4] Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh? A. 5 .B. 6 . C. 7 .D. 8 . Lời giải Chọn C Đa giác có n cạnh n ¥ ,n 3 . 2 Số đường chéo trong đa giác là: Cn n . 2 n! n 7 Ta có: Cn n 2n 3n n n 1 6n n 7 . n 2 !.2! n 0 Câu 47: [1D2-2.7-4] (THPT Chuyên Quốc Học Huế - lần 1 - 2017 - 2018) Bé Minh có một bảng hình chữ nhật gồm 6 hình vuông đơn vị, cố định không xoay như hình vẽ. Bé muốn dùng 3 màu để tô tất cả các cạnh của các hình vuông đơn vị, mỗi cạnh tô một lần sao cho mỗi hình vuông đơn vị được tô bởi đúng 2 màu, trong đó mỗi màu tô đúng 2 cạnh. Hỏi bé Minh có tất cả bao nhiêu cách tô màu bảng ? A. 4374 . B. 139968. C. 576 . D. 15552. Lời giải Chọn D Tô màu theo nguyên tắc: Tô 1 ô vuông 4 cạnh: chọn 2 trong 3 màu, ứng với 2 màu được chọn có 6 cách tô. Do đó, có 2 6.C3 cách tô. Tô 3 ô vuông 3 cạnh (có một cạnh đã được tô trước đó): ứng với 1 ô vuông có 3 cách tô màu 1 trong 3 cạnh theo màu của cạnh đã tô trước đó, chọn 1 trong 2 màu còn lại tô 2 cạnh còn lại, có 1 3 3.C2 6 cách tô. Do đó có 6 cách tô. Tô 2 ô vuông 2 cạnh (có 2 cạnh đã được tô trước đó): ứng với 1 ô vuông có 2 cách tô màu 2 cạnh (2 cạnh tô trước cùng màu hay khác nhau không ảnh hưởng số cách tô). Do đó có 22 cách tô. 2 3 Vậy có: 6.C3 .6 .4 15552 cách tô. Câu 361. [1D2-2.7-4] Cho đa giác đều n đỉnh, n ¥ và n 3 . Tìm n biết rằng đa giác đã cho có 135 đường chéo A. n 15. B. n 27 . C. n 8 . D. n 18. Lời giải Chọn D 2 + Tìm công thức tính số đường chéo: Số đoạn thẳng tạo bởi n đỉnh là Cn , trong đó có n cạnh, 2 suy ra số đường chéo là Cn n . 2 + Đa giác đã cho có 135 đường chéo nên Cn n 135. + Giải PT n! 2 n 18 nhan : n 135 , n ¥ ,n 2 n 1 n 2n 270 n 3n 270 0 n 2 !2! n 15 loai n 18 .