Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 4: Biến cố. Xác suất của biến cố - Dạng 6: Toán tổng hợp về hai công thức xác suất - Mức độ 3 - Năm học 2017-2018 (Có đáp án)

doc 13 trang xuanthu 200
Bạn đang xem tài liệu "Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 4: Biến cố. Xác suất của biến cố - Dạng 6: Toán tổng hợp về hai công thức xác suất - Mức độ 3 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • doctrac_nghiem_dai_so_lop_11_tach_tu_de_thi_thu_thpt_quoc_gia_c.doc

Nội dung text: Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 4: Biến cố. Xác suất của biến cố - Dạng 6: Toán tổng hợp về hai công thức xác suất - Mức độ 3 - Năm học 2017-2018 (Có đáp án)

  1. Câu 48: [1D2-4.6-3] (THPT Chuyên Hùng Vương - Phú Thọ - Lần 1 - 2018 - BTN) Hai người ngang tài ngang sức tranh chức vô địch của một cuộc thi cờ tướng. Người giành chiến thắng là người đầu tiên thắng được năm ván cờ. Tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai mới thắng 2 ván, tính xác suất để người chơi thứ nhất giành chiến thắng. 3 4 7 1 A. . B. . C. . D. . 4 5 8 2 Lời giải Chọn C Theo giả thiết hai người ngang tài ngang sức nên xác suất thắng thua trong một ván đấu là 0,5;0,5 . Xét tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai thắng 2 ván. Để người thứ nhất chiến thắng thì người thứ nhất cần thắng 1 ván và người thứ hai thắng không quá hai ván. Có ba khả năng: TH1: Đánh 1 ván. Người thứ nhất thắng xác suất là 0,5. TH2: Đánh 2 ván. Người thứ nhất thắng ở ván thứ hai xác suất là 0,5 2 . TH3: Đánh 3 ván. Người thứ nhất thắng ở ván thứ ba xác suất là 0,5 3 . 2 3 7 Vậy P 0,5 0,5 0,5 8 Câu 21: [1D2-4.6-3] (THPT Hoàng Hóa - Thanh Hóa - Lần 2 - 2018 - BTN) Chiếc kim của bánh xe trong trò chơi chiếc nón kỳ diệu có thể dừng lại ở 7 vị trí với khả năng như nhau. Xác suất trong 3 lần quay chiếc kim bánh xe dừng lại ở 3 vị trí khác nhau là 1 30 1 5 A. B. C. D. 144 49 24 49 Lời giải Chọn B Gọi A là biến cố chiếc kim chỉ dừng lại ở 1 vị trí sau 3 lần quay. Khi đó 3 1 1 1 P A C7 . 7 49 Gọi B là biến cố chiếc kim chỉ dừng lại ở 2 vị trí khác nhau sau 3 lần quay. Khi đó 2 2 1 1 1 18 P B C7 .C6 . 7 7 49 Gọi C là biến cố chiếc kim chỉ dừng lại ở ở 3 vị trí khác nhau sau 3 lần quay. Khi đó 30 P A P B P C 1hay P C 1 P A P B . 49 Câu 21: [1D2-4.6-3] (THPT Hoàng Hóa - Thanh Hóa - Lần 2 - 2018) Chiếc kim của bánh xe trong trò chơi chiếc nón kỳ diệu có thể dừng lại ở 7 vị trí với khả năng như nhau. Xác suất trong 3 lần quay chiếc kim bánh xe dừng lại ở 3 vị trí khác nhau là 1 30 1 5 A. B. C. D. 144 49 24 49 Lời giải Chọn B
  2. Gọi A là biến cố chiếc kim chỉ dừng lại ở 1 vị trí sau 3 lần quay. Khi đó 3 1 1 1 P A C7 . 7 49 Gọi B là biến cố chiếc kim chỉ dừng lại ở 2 vị trí khác nhau sau 3 lần quay. Khi đó 2 2 1 1 1 18 P B C7 .C6 . 7 7 49 Gọi C là biến cố chiếc kim chỉ dừng lại ở ở 3 vị trí khác nhau sau 3 lần quay. Khi đó 30 P A P B P C 1hay P C 1 P A P B . 49 Câu 40: [1D2-4.6-3] (THPT Trần Nhân Tông - Quảng Ninh - Lần 1 - 2017 - 2018 - BTN) Một thí sinh tham gia kì thi THPT Quốc gia. Trong bài thi môn Toán bạn đó làm được chắc chắn đúng 40 câu. Trong 10 câu còn lại chỉ có 3 câu bạn loại trừ được mỗi câu một đáp án chắc chắn sai. Do không còn đủ thời gian nên bạn bắt buộc phải khoanh bừa các câu còn lại. Hỏi xác suất bạn đó được 9 điểm là bao nhiêu? A. 0,079 . B. 0,179 . C. 0,097 . D. 0,068. Lời giải Chọn A 1 Bài thi có 50 câu nên mỗi câu đúng được điểm. Như vây để được 9 điểm, thí sinh này phải 5 trả lời đúng thêm 5 câu nữa. Trong 10 câu còn lại chia làm 2 nhóm: + Nhóm A là 3 câu đã loại trừ được một đáp án chắc chắn sai. Nên xác suất chọn được phương 1 2 án trả lời đúng là , xác suất chọn được phương án trả lời sai là . 3 3 1 + Nhóm B là 7 câu còn lại, xác suất chọn được phương án trả lời đúng là , xác suất chọn 4 3 được phương án trả lời sai là . 4 Ta có các trường hợp sau: - TH1 : có 3 câu trả lời đúng thuộc nhóm A và 2 câu trả lời đúng thuộc nhóm B. 3 2 5 1 2 1 3 189 - Xác suất là P1 .C7 . . . 3 4 4 16384 - TH2 : có 2 câu trả lời đúng thuộc nhóm A và 3 câu trả lời đúng thuộc nhóm B. 2 3 4 2 1 2 3 1 3 315 - Xác suất là P2 C3 . .C7 . . . 3 3 4 4 8192 - TH3 : có 1 câu trả lời đúng thuộc nhóm A và 4 câu trả lời đúng thuộc nhóm B. 2 4 3 1 1 2 4 1 3 105 - Xác suất là P3 C3. . .C7 . . . 3 3 4 4 4096 - TH4 : không có câu trả lời đúng nào thuộc nhóm A và 5 câu trả lời đúng thuộc nhóm B. 3 5 2 2 5 1 3 7 - Xác suất là P4 .C7 . . . 3 4 4 2048 1295 Vậy xác suất cần tìm là : P P P P P 0.079 . 1 2 3 4 16384
  3. Câu 41: [1D2-4.6-3] (THPT Trần Nhân Tông - Quảng Ninh - Lần 1 - 2017 - 2018 - BTN) Học sinh A thiết kế bảng điều khiển điện tử mở cửa phòng học của lớp mình. Bảng gồm 10 nút, mỗi nút được ghi một số từ 0 đến 9 và không có hai nút nào được ghi cùng một số. Để mở cửa cần nhấn 3 nút liên tiếp khác nhau sao cho 3 số trên 3 nút theo thứ tự đã nhấn tạo thành một dãy số tăng và có tổng bằng 10. Học sinh B chỉ nhớ được chi tiết 3 nút tạo thành dãy số tăng. Tính xác suất để B mở được cửa phòng học đó biết rằng để nếu bấm sai 3 lần liên tiếp cửa sẽ tự động khóa lại. 631 189 1 1 A. .B. . C. . D. . 3375 1003 5 15 Lời giải Chọn B 3 Số phần tử của không gian mẫu: n  A10 720. Gọi A là biến cố cần tính xác suất. Khi đó: các bộ số có tổng bằng 10 và khác nhau là: 0;1;9 ; 0;2;8 ; 0;3;7 ; 0;4;6 ; 1;2;7 ; 1;3;6 ; 1;4;5 ; 2;3;5 . 8 8 TH1: Bấm lần thứ nhất là đúng luôn thì xác suất là 3 . C10 120 8 8 TH2: Bấm đến lần thứ hai là đúng thì xác suất là: 1 . ( vì trừ đi lần đâu bị sai nên 120 119 không gian mẫu chỉ còn là 120 1 119 ). 8 8 8 TH3: Bấm đến lần thứ ba mới đúng thì xác suất là: 1 1 . 120 119 118 8 8 8 8 8 8 189 Vậy xác suất cần tìm là: 1 . 1 1 . 120 120 119 120 119 118 1003 Câu 48: [1D2-4.6-3] (THPT Mộ Đức 2 - Quảng Ngãi - 2017 - 2018 - BTN)Gọi A là tập hợp tất cả các số tự nhiên có tám chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc A , tính xác suất để số tự nhiên được chọn chia hết cho 45. 2 53 1 5 A. .B. . C. . D. . 81 2268 36 162 Lời giải Chọn B 8 7 Ta có n  A10 A9 . Gọi A là tập hợp các số a có 8 chữ số khác nhau chia hết cho 45 . Khi đó a chia hết cho 5 và 9 (tổng các chữ số chia hết cho 9 và số hàng đơn vị bằng 0 hoặc 5 ). Trường hợp 1: a có hàng đơn vị bằng 0 ; 7 chữ số còn lại có chữ số 9 và 3 trong 4 bộ số 1;8 , 2;7 , 3;6 , 4;5 , có 4.7! số. Trường hợp 2: a có hàng đơn vị bằng 5 ; 7 chữ số còn lại có chữ số 4 và 3 trong 4 bộ số 0;9 , 1;8 , 2;7 , 3;6 . * Không có bộ 0;9 , có 7! số. 2 * Có bộ 0;9 , có C3 7! 6! số
  4. 2 n A 4.7! C3 7! 6! số. 2 4.7! C3 7! 6! 53 P A 8 7 . A10 A9 2268 Câu 7: [1D2-4.6-3] (SGD Bà Rịa - Vũng Tàu - Lần 1 - 2017 - 2018 - BTN) Lớp 11A có 44 học sinh trong đó có 14 học sinh đạt điểm tổng kết môn Hóa học loại giỏi và 15 học sinh đạt điểm tổng kết môn Vật lý loại giỏi. Biết rằng khi chọn một học sinh của lớp đạt điểm tổng kết môn Hóa học hoặc Vật lý loại giỏi có xác suất là 0,5. Số học sinh đạt điểm tổng kết giỏi cả hai môn Hóa học và Vật lý là A. 8 .B. 7 . C. 9 . D. 6 . Lời giải Chọn B Chọn một học sinh đạt điểm tổng kết môn Hóa học hoặc môn Vật lý loại giỏi thì học sinh đó có thể chỉ giỏi một môn Hóa học, Vật lý hoặc có thể giỏi cả hai môn. Số học sinh giỏi ít nhất một môn là 0,5.44 22. Gọi x ; y ; z lần lượt là số học sinh giỏi môn Hóa học; Vật lý; giỏi cả hai môn. x z 14 x 7 Ta có hệ phương trình y z 15 y 8 . x y z 22 z 7 Vậy số học sinh đạt điểm tổng kết giỏi cả hai môn Hóa học và Vật lý là 7 . Câu 42: [1D2-4.6-3](THPT Chuyên Hùng Vương - Gia Lai - Lần 2 -2018 - BTN) Một người gọi điện thoại nhưng quên mất chữ số cuối. Tính xác suất để người đó gọi đúng số điện thoại mà không phải thử quá hai lần. 1 1 19 2 A. .B. .C. .D. . 5 10 90 9 Lời giải Chọn A n  10 10 Số phần tử của không gian mẫu là . Để người đó gọi đúng số điện thoại mà không phải thử quá hai lần ta có 2 trường hợp: TH1: Người đó gọi đúng ở lần thứ nhất. TH2: Người đó gọi đúng ở lần thứ hai. 1 P A A :" 1 Gọi 1 người đó gọi đúng ở lần thứ nhất " xác suất người đó gọi đúng là 10 và 9 P A1 xác suất người đó gọi không đúng là 10 . 1 P A A :" 2 Gọi 2 người đó gọi đúng ở lần thứ hai" xác suất người đó gọi đúng là 9 . Gọi A :"người đó gọi đúng số điện thoại mà không phải thử quá hai lần" ta có 1 9 1 1 P A P A P A .P A . A A  A A 1 1 2 1 1 2 10 10 9 5 . Câu 923. [1D2-4.6-3] Một bình đựng 5 viên bi xanh và 3 viên bi đỏ (các viên bi chỉ khác nhau về màu sắc). Lấy ngẫu nhiên một viên bi, rồi lấy ngẫu nhiên một viên bi nữa. Khi tính xác suất của biến cố “Lấy lần thứ hai được một viên bi xanh”, ta được kết quả 5 5 5 4 A. .B. . C. .D. . 8 9 7 7
  5. Lời giải. Chọn A Gọi A là biến cố “Lấy lần thứ hai được một viên bi xanh”. Có hai trường hợp xảy ra Trường hợp 1. Lấy lần thứ nhất được bi xanh, lấy lần thứ hai cũng được một bi xanh. Xác suất 5 4 5 trong trường hợp này là P . . 1 8 7 14 Trường hợp 2. Lấy lần thứ nhất được bi đỏ, lấy lần thứ hai được bi xanh. Xác suất trong trường 3 5 15 hợp này là P . . 2 8 7 56 5 15 35 5 Vậy P A P P . 1 2 14 56 56 8 Câu 503. [1D2-4.6-3] Ba người cùng bắn vào 1 bia. Xác suất để người thứ nhất, thứ hai,thứ ba bắn trúng đích lần lượt là 0,8; 0,6; 0,5 . Xác suất để có đúng 2 người bắn trúng đích bằng: A. 0,24 . B. 0,96. C. 0,46 . D. 0,92. Lời giải Chọn C Gọi X là biến cố: “có đúng 2 người bắn trúng đích “ Gọi A là biến cố: “người thứ nhất bắn trúng đích “ P A 0,8 ; P A 0,2 . Gọi B là biến cố: “người thứ hai bắn trúng đích “ P B 0,6, P B 0,4 . Gọi C là biến cố: “người thứ ba bắn trúng đích “ P C 0,5, P C 0,5. Ta thấy biến cố A, B,C là 3 biến cố độc lập nhau, theo công thức nhân xác suất ta có: P X P A.B.C P A.B.C P A.B.C 0,8.0,6.0,5 0,8.0,4.0,5 0,2.0,6.0,5 0,46 . Câu 3354: [1D2-4.6-3] Có 3 chiếc hộp. Hộp A chứa 3 bi đỏ, 5 bi trắng. Hộp B chứa 2 bi đỏ, hai bi vàng. Hộp C chứa 2 bi đỏ, 3 bi xanh. Lấy ngẫu nhiên một hộp rồi lấy một bi từ hộp đó. Xác suất để được một bi đỏ là: 1 1 2 17 A. . B. . C. . D. . 8 6 15 40 Lời giải Chọn D Lấy ngẫu nhiên một hộp Gọi C 1 là biến cố lấy được hộp A Gọi C2 là biến cố lấy được hộp B Gọi C3 là biến cố lấy được hộp C 1 Vậy P C P C P C 1 2 3 3 Gọi C là biến cố “ lấy ngẫu nhiên một hộp, trong hộp đó lại lấy ngẫu nhiên một viên bi và được bi đỏ ” là C C C1  C C2  C C3 P C P C C1 P C C 2 P C C3 1 3 1 2 1 2 17 . . . 3 8 3 4 3 5 40 Câu 50: [1D2-4.6-3](CHUYÊN VINH LẦN 3-2018) Chia ngẫu nhiên 9 viên bi gồm 4 viên màu đỏ và 5 viên màu xanh có cùng kích thước thành ba phần, mỗi phần 3 viên. Xác xuất để không có phần nào gồm 3 viên cùng màu bằng
  6. 9 2 3 5 A. . B. . C. . D. . 14 7 7 14 Lời giải Chọn A Vì xác suất không thay đổi khi ta coi ba phần này có xếp thứ tự 1, 2 , 3 . Chia ngẫu nhiên 9 viên bi gồm 4 viên màu đỏ và 5 viên màu xanh có cùng kích thước thành ba phần, mỗi phần 3 viên như sau: 3 Phần 1: Chọn 3 viên cho phần 1 có C9 cách. 3 Phần 2 : Chọn 3 viên cho phần 2 có C6 cách. Phần 3 : Chọn 3 viên lại cho phần 3 có 1 cách. 3 3 Do đó số phần tử của không gian mẫu là: n  C9 .C6 1680 . Gọi A là biến cố không có phần nào gồm 3 viên cùng màu, khi đó ta chia các viên bi thành 3 bộ như sau: 2 1 Bộ 1: 2 đỏ - 1 xanh: Có C4 C5 cách chọn 1 2 Bộ 2 : 1 đỏ - 2 xanh: Có C2C4 cách chọn Bộ 3 : gồm các viên bi còn lại(1 đỏ - 2 xanh). 3! Vì bộ 2 và 3 có các viên bi giống nhau để không phân biệt hai bộ này nên có sắp xếp 3 bộ 2! vào 3 phần trên. 3! Do đó n A C 2C1C1C 2 1080. 2! 4 5 2 4 n A 1080 9 Ta được P A .Câu 3435. [1D2-4.6-3] Ba người cùng bắn vào 1 biA. Xác suất n  1680 14 để người thứ nhất, thứ hai,thứ ba bắn trúng đích lần lượt là 0,8; 0,6; 0,5. Xác suất để có đúng 2 người bắn trúng đích bằng: A. 0.24. B. 0.96. C. 0.46. D. 0.92. Lời giải. Chọn C Gọi X là biến cố: “có đúng 2 người bắn trúng đích “ Gọi A là biến cố: “người thứ nhất bắn trúng đích “=> P A 0,8; P A 0,2. Gọi B là biến cố: “người thứ hai bắn trúng đích “=> P B 0,6; P B 0,4. Gọi C là biến cố: “người thứ ba bắn trúng đích “=> P C 0,5; P C 0,5. Ta thấy biến cố A, B, C là 3 biến cố độc lập nhau, theo công thức nhân xác suất ta có: P X P A.B.C P A.B.C P A.B.C 0,8.0,6.0,5 0,8.0,4.0,5 0,2.0,6.0,5 0,46. Câu 3476. [1D2-4.6-3] Ba người cùng bắn vào 1 bia Xác suất để người thứ nhất, thứ hai,thứ ba bắn trúng đích lần lượt là 0,8 ; 0,6 ; 0,5. Xác suất để có đúng 2 người bắn trúng đích bằng: A. 0,24 . B. 0,96. C. 0,46 . D. 0,92. Lời giải Chọn C Xác suất để người thứ nhất, thứ hai, thứ ba bán trúng đích lần lượt là: P A1 0,8 ; P A2 0,6 ; P A1 0,5
  7. Xác suất để có đúng hai người bán trúng đích bằng: P A1 .P A2 .P A3 P A1 .P A2 .P A3 P A1 .P A2 .P A3 0,46 Câu 3501. [1D2-4.6-3] Có 3 chiếc hộp. Hộp A chứa 3 bi đỏ, 5 bi trắng. Hộp B chứa 2 bi đỏ, 2 bi vàng. Hộp C chứa 2 bi đỏ, 3 bi xanh. Lấy ngẫu nhiên một hộp rồi lấy một bi từ hộp đó. Xác suất để được một bi đỏ là: 1 1 2 17 A. .B. . C. . D. . 8 6 15 40 Lời giải Chọn D. Lấy ngẫu nhiên một hộp Gọi C 1 là biến cố lấy được hộp A Gọi C2 là biến cố lấy được hộp B Gọi C3 là biến cố lấy được hộp C 1 Vậy P C P C P C 1 2 3 3 Gọi C là biến cố “ lấy ngẫu nhiên một hộp, trong hộp đó lại lấy ngẫu nhiên một viên bi và được bi đỏ ” là C C C1  C C2  C C3 P C P C C1 P C C 2 P C C3 1 3 1 2 1 2 17 . . . . 3 8 3 4 3 5 40 Câu 3512. [1D2-4.6-3] Trong một kì thi có 60% thí sinh đỗ. Hai bạn A , B cùng dự kì thi đó. Xác suất để chỉ có một bạn thi đỗ là: A. 0,24 .B. 0,36.C. 0,16 .D. 0,48 . Lời giải Chọn D. Ta có: P A P B 0,6 P A P B 0,4 Xác suất để chỉ có một bạn thi đỗ là: P P A .P B P A .P B 0,48 . Câu 1621. [1D2-4.6-3] Có 3 chiếc hộp. Hộp A chứa 3 bi đỏ, 5 bi trắng. Hộp B chứa 2 bi đỏ, 2 bi vàng. Hộp C chứa 2 bi đỏ, 3 bi xanh. Lấy ngẫu nhiên một hộp rồi lấy một bi từ hộp đó. Xác suất để được một bi đỏ là: 1 1 2 17 A. . B. . C. .D. . 8 6 15 40 Lời giải Chọn D Lấy ngẫu nhiên một hộp Gọi C 1 là biến cố lấy được hộp A Gọi C2 là biến cố lấy được hộp B Gọi C3 là biến cố lấy được hộp C 1 Vậy P C P C P C 1 2 3 3 Gọi C là biến cố “ lấy ngẫu nhiên một hộp, trong hộp đó lại lấy ngẫu nhiên một viên bi và được bi đỏ ” là C C C1  C C2  C C3 P C P C C1 P C C 2 P C C3 1 3 1 2 1 2 17 . . . 3 8 3 4 3 5 40
  8. Chưa tô đậm A, B, C D trong đáp án, bài này không có trong chương trình phổ thông. Câu 1659. [1D2-4.6-3] Ba người cùng bắn vào 1 bia. Xác suất để người thứ nhất, thứ hai,thứ ba bắn trúng đích lần lượt là 0,8 ; 0,6; 0,5 . Xác suất để có đúng 2 người bắn trúng đích bằng: A. 0,24 . B. 0,96. C. 0,46 . D. 0,92. Lời giải Chọn C Gọi X là biến cố: “có đúng 2 người bắn trúng đích “ Gọi A là biến cố: “người thứ nhất bắn trúng đích “=> P A 0,8; P A 0,2. Gọi B là biến cố: “người thứ hai bắn trúng đích “=> P B 0,6; P B 0,4. Gọi C là biến cố: “người thứ ba bắn trúng đích “=> P C 0,5; P C 0,5. Ta thấy biến cố A, B, C là 3 biến cố độc lập nhau, theo công thức nhân xác suất ta có: P X P A.B.C P A.B.C P A.B.C 0,8.0,6.0,5 0,8.0,4.0,5 0,2.0,6.0,5 0,46 . Câu 1705. [1D2-4.6-3] Gieo một con xúc sắc bốn lần. Tìm xác suất của biến cố 1. A: “ Mặt bốn chấm xuất hiện ít nhất một lần” 4 4 4 4 5 1 5 5 A. P A 1 . B. P A 1 . C. P A 3 . D. P A 2 . 6 6 6 6 2. B: “ Mặt ba chấm xuất hiện đúng một lần” 5 5 5 5 A. P A . B. P A . C. P A . D. P A . 324 32 24 34 Lời giải 1. Chọn A Gọi Ai là biến cố “ mặt 4 chấm xuất hiện lần thứ i ” với i 1,2,3,4 . Khi đó: Ai là biến cố “ Mặt 4 chấm không xuất hiện lần thứ i ” 1 5 Và P A 1 P(A ) 1 i i 6 6 Ta có: A là biến cố: “ không có mặt 4 chấm xuất hiện trong 4 lần gieo” Và A A1.A2.A3.A4 . Vì các Ai độc lập với nhau nên ta có 4 5 P(A) P A1 P A2 P A3 P A4 6 4 5 Vậy P A 1 P A 1 . 6 2. Chọn A Gọi Bi là biến cố “ mặt 3 chấm xuất hiện lần thứ i ” với i 1,2,3,4 Khi đó: Bi là biến cố “ Mặt 3 chấm không xuất hiện lần thứ i ” Ta có: A B1.B2.B3.B4  B1.B2.B3.B4  B1.B2.B3.B4  B1.B2.B3.B4 Suy ra P A P B1 P B2 P B3 P B4 P B1 P B2 P B3 P B4 P B1 P B2 P B3 P B4 P B1 P B2 P B3 P B4 1 5 Mà P B , P B . i 6 i 6
  9. 3 1 5 5 Do đó: P A 4. . . 6 6 324 Câu 1713. [1D2-4.6-3] Chọn ngẫu nhiên một vé xổ số có 5 chữ số được lập từ các chữ số từ 0 đến 9 . Tính xác suất của biến cố X: “lấy được vé không có chữ số 2 hoặc chữ số 7 ” A. P(X ) 0,8533 . B. P(X ) 0,85314 . C. P(X ) 0,8545 . D. P(X ) 0,853124 . Lời giải Chọn A Ta có n() 105 Gọi A: “lấy được vé không có chữ số 2 ” B: “lấy được vé số không có chữ số 7 ” Suy ra n(A) n(B) 95 P A P B 0,9 5 Số vé số trên đó không có chữ số 2 và 7 là: 85 , suy ra n(A B) 85 P(A B) (0,8)5 Do X A B P(X ) P A B P A P B P A B 0,8533. Câu 1720. [1D2-4.6-3] Gieo ngẫu nhiên một con xúc xắc 6 lần. Tính xác suất để một số lớn hơn hay bằng 5 xuất hiện ít nhất 5 lần trong 6 lần gieo. 23 13 13 13 A. . B. . C. . D. . 729 79 29 729 Lời giải Chọn D Gọi A là biến cố một số lớn hơn hay bẳng 5 chấm trong mỗi lần gieo.A xảy ra,con xúc xắc 2 1 xuất hiện mặt 5 , chấm hoặc 6 chấm ta có P A . 6 3 6 1 Trong 6 lần gieo xác suất để biến cố A xảy ra đúng 6 lần P A.A.A.A.A.A 3 Xác suất để được đúng 5 lần xuất hiện A và 1 lần không xuất hiện A theo một thứ tự nào đó 5 1 2 . 3 3 5 1 2 12 Vì có 6 cách để biến cố này xuất hiện: 6. . 3 3 729 6 12 1 13 Vậy xác xuất để A xuất hiện ít nhất 5 lần là . 729 3 729 Câu 1722. [1D2-4.6-3] Chọn ngẫu nhiên một vé xổ số có 5 chữ số được lập từ các chữ số từ 0 đến 9 . Tính xác suất của biến cố X: “lấy được vé không có chữ số 1 hoặc chữ số 2 ”. A. P(X ) 0,8534 . B. P(X ) 0,84 . C. P(X ) 0,814 . D. P(X ) 0,8533 . Lời giải Chọn D Ta có  105 Gọi A: “lấy được vé không có chữ số 1” B: “lấy được vé số không có chữ số 2 ” 5 5 Suy ra  A B 9 P A P B 0,9
  10. 5 5 Số vé số trên đó không có chữ số 1 và 2 là: 8 , suy ra  AB 8 Nên ta có: P(A B) (0,8)5 Do X A B . Vậy P(X ) P A B P A P B P A B 0,8533 . Câu 1723. [1D2-4.6-3] Một máy có 5 động cơ gồm 3 động cơ bên cánh trái và hai động cơ bên cánh phải. Mỗi động cơ bên cánh phải có xác suất bị hỏng là 0,09 , mỗi động cơ bên cánh trái có xác suất bị hỏng là 0,04 . Các động cơ hoạt động độc lập với nhau. Máy bay chỉ thực hiện được chuyến bay an toàn nếu có ít nhất hai động cơ làm việc. Tìm xác suất để máy bay thực hiện được chuyến bay an toàn. A. P(A) 0,9999074656 . B. P(A) 0,981444 . C. P(A) 0,99074656 . D. P(A) 0,91414148 . Lời giải Chọn A Gọi A là biến cố: “Máy bay bay an toàn”. Khi đó A là biến cố: “Máy bay bay không an toàn”. Ta có máy bay bay không an toàn khi xảy ra một trong các trường hợp sau TH 1: Cả 5 động cơ đều bị hỏng Ta có xác suất để xảy ra trường hợp này là: 0,09 3 . 0,04 2 TH 2: Có một động cơ ở cánh phải hoạt động và các động cơ còn lại đều bị hỏng. Xác suất để xảy ra trường hợp này là: 3. 0,09 2 .0,91.(0,04)2 TH 3: Có một động cơ bên cánh trái hoạt động, các động cơ còn lại bị hỏng Xác suất xảy ra trường hợp này là: 2.0,04.0,96.(0,09)3 P A 0,09 3 . 0,04 2 3. 0,09 2 .0,91.(0,04)2 2.0,04.0,96.(0,09)3 0,925344.10 4 . Vậy P(A) 1 P A 0,9999074656 . Câu 50: [1D2-4.6-3] (SGD - Bắc Ninh - 2017 - 2018 - BTN) Đề kiểm tra 15 phút có 10 câu trắc nghiệm mỗi câu có bốn phương án trả lời, trong đó có một phương án đúng, trả lời đúng được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn một phương án. Tính xác suất để thí sinh đó đạt từ 8,0 trở lên. 436 463 436 463 A. . B. . C. . D. . 410 410 104 104 Lời giải Chọn A Số phân tử không gian mẫu n  410 . Gọi A là biến cố “thí sinh đạt từ 8,0 trở lên”. Ta có các trường hợp: 8 2 + Thí sinh đúng 8 câu, sai 2 câu có C10.3 405 (cách). 9 1 + Thí sinh đúng 9 câu, sai 1 câu có C10.3 30 (cách).
  11. 10 + Thí sinh đúng cả 10 câu có C10 1 (cách). Do đó n A 405 30 1 436 . n A 436 Vậy xác suất của biến cố A là P . n  410 BẢNG ĐÁP ÁN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 D A D B A D D C A A D C C D B A C A B C B A B C B 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 B D A C A A B C D D B C D D C B C B A B A D B D A Câu 27: [1D2-4.6-3] (Chuyên Thái Bình - Lần 3 - 2017 - 2018 - BTN) Gọi A là tập các số tự nhiên có 6 chữ số đôi một khác nhau được tạo ra từ các chữ số 0 , 1, 2 , 3 , 4 , 5 . Từ A chọn ngẫu nhiên một số. Tính xác suất để số được chọn có chữ số 3 và 4 đứng cạnh nhau. 4 4 8 2 A. .B. .C. .D. . 25 15 25 15 Lời giải Chọn C Số phần tử của không gian mẫu: n  5.5! 600 . Gọi số tự nhiên có 6 chữ số đôi một khác nhau và có chữ số 3 và 4 đứng cạnh nhau là abcde . Ta coi cặp 3,4 là phần tử kép, khi đó chỉ có 5 phần tử 0 , 1, 2 , 3,4 , 5 . Số các số tự nhiên có 6 chữ số đôi một khác nhau và có chữ số 3 và 4 đứng cạnh nhau (kể cả số 0 đứng đầu) là: 2.5! 240 số. Số các số tự nhiên có 6 chữ số đôi một khác nhau và có chữ số 3 và 4 đứng cạnh nhau (có số 0 đứng đầu) là: 2.4! 48 số. Gọi B là biến cố cần tính xác suất, suy ra n B 240 48 192 . 192 8 Vậy P B . 600 25 Câu 3214. [1D2-4.6-3] Xác suất bắn trúng mục tiêu của một vận động viên khi bắn một viên đạn là 0,6 . Người đó bắn hai viên đạn một cách độc lập. Xác suất để một viên trúng mục tiêu và một viên trượt mục tiêu là: A. 0,4 . B. 0,6 . C. 0,48 . D. 0,24 . Lời giải Chọn C Có thể lần 1 bắn trúng hoặc lần 2 bắn trúng.Chọn lần để bắn trúng có 2 cách. Xác suất để 1 viên trúng mục tiêu là 0,6 . Xác suất để 1 viên trượt mục tiêu là 1 0,6 0,4 . Theo quy tắc nhân xác suất: P(A) 2.0,6.0,4 0,48 . Câu 503. [1D2-4.6-3] Ba người cùng bắn vào 1 bia. Xác suất để người thứ nhất, thứ hai,thứ ba bắn trúng đích lần lượt là 0,8; 0,6; 0,5 . Xác suất để có đúng 2 người bắn trúng đích bằng: A. 0,24 . B. 0,96. C. 0,46 . D. 0,92. Lời giải Chọn C
  12. Gọi X là biến cố: “có đúng 2 người bắn trúng đích “ Gọi A là biến cố: “người thứ nhất bắn trúng đích “ P A 0,8 ; P A 0,2 . Gọi B là biến cố: “người thứ hai bắn trúng đích “ P B 0,6, P B 0,4 . Gọi C là biến cố: “người thứ ba bắn trúng đích “ P C 0,5, P C 0,5. Ta thấy biến cố A, B,C là 3 biến cố độc lập nhau, theo công thức nhân xác suất ta có: P X P A.B.C P A.B.C P A.B.C 0,8.0,6.0,5 0,8.0,4.0,5 0,2.0,6.0,5 0,46 . Câu 569. [1D2-4.6-3] Có 3 chiếc hộp. Hộp A chứa 3 bi đỏ, 5 bi trắng. Hộp B chứa 2 bi đỏ, 2 bi vàng. Hộp C chứa 2 bi đỏ, 3 bi xanh. Lấy ngẫu nhiên một hộp rồi lấy một bi từ hộp đó. Xác suất để được một bi đỏ là 1 1 2 17 A. . B. . C. . D. . 8 6 15 40 Lời giải Chọn D Lấy ngẫu nhiên một hộp Gọi C 1 là biến cố lấy được hộp A Gọi C2 là biến cố lấy được hộp B Gọi C3 là biến cố lấy được hộp C 1 Vậy P C P C P C 1 2 3 3 Gọi C là biến cố “ lấy ngẫu nhiên một hộp, trong hộp đó lại lấy ngẫu nhiên một viên bi và được bi đỏ ”. Xác suất cần tính là E C C1  C C2  C C3 P E P C C1 P C C 2 P C C3 1 3 1 2 1 2 17 . . . . 3 8 3 4 3 5 40 Câu 580. [1D2-4.6-3] Trong một kì thi có 60% thí sinh đỗ. Hai bạn A , B cùng dự kì thi đó. Xác suất để chỉ có một bạn thi đỗ là A. 0,24 . B. 0,36. C. 0,16 . D. 0,48 . Lời giải Chọn D Ta có: P A P B 0,6 P A P B 0,4. Xác suất để chỉ có một bạn thi đỗ là: P P A .P B P A .P B 0,48 . Câu 40: [1D2-4.6-3] (THPT THÁI PHIÊN-HẢI PHÒNG-Lần 4-2018-BTN) Có 3 chiếc hộp A, B,C . Hộp A chứa 3 bi đỏ, 5 bi trắng. Hộp B chứa 2 bi đỏ, 2 bi vàng. Hộp C chứa 2 bi đỏ, 3 bi xanh. Lấy ngẫu nhiên một trong ba hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó. Tính xác suất để được một bi đỏ. 1 3 1 17 A. . B. . C. . D. . 8 40 6 40 Lời giải Chọn D Gọi Bk là biến cố: “ Sản phẩm lấy ra thuộc hộp thứ k ”, k A, B,C và A là biến cố “lấy được một viên bi đỏ”. Hệ biến cố trên là hệ biến cố đầy đủ.
  13. 1 1 1 3 2 2 Ta có P B ; P B ; P B và P A / B ; P A / B ; P A / B . 1 3 2 3 3 3 1 8 2 4 3 5 Do đó P A P B1 .P A / B1 P B2 .P A / B2 P B3 .P A / B3 1 3 1 2 1 2 17 . . . . 3 8 3 4 3 5 40