Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 5 - Chủ đề 2: Bài toán tiếp tuyến của đường cong - Dạng 1: Xác định toạ độ tiếp điểm, giao điểm - Mức độ 4 - Năm học 2017-2018 (Có đáp án)

doc 2 trang xuanthu 220
Bạn đang xem tài liệu "Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 5 - Chủ đề 2: Bài toán tiếp tuyến của đường cong - Dạng 1: Xác định toạ độ tiếp điểm, giao điểm - Mức độ 4 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • doctrac_nghiem_dai_so_lop_11_tach_tu_de_thi_thu_thpt_quoc_gia_c.doc

Nội dung text: Trắc nghiệm Đại số Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 5 - Chủ đề 2: Bài toán tiếp tuyến của đường cong - Dạng 1: Xác định toạ độ tiếp điểm, giao điểm - Mức độ 4 - Năm học 2017-2018 (Có đáp án)

  1. Câu 2241. [1D5-2.1-4] Cho hàm số y x3 3x 2 có đồ thị là C . Tìm những điểm trên trục hoành sao cho từ đó kẻ được ba tiếp tuyến đến đồ thị hàm số và trong đó có hai tiếp tuyến vuông góc với nhau. 8 28 8 28 A. M ;0 . B. M ;0 .C. M ;0 . D. M ;0 . 27 7 7 27 Lời giải Chọn B Xét điểm M(m;0) Ox . Cách 1: Đường thẳng d đi qua M , hệ số góc k có phương trình: y k(x m) . x3 3x 2 k(x m) d là tiếp tuyến của C hệ có nghiệm x 2 3x 3 k Thế k vào phương trình thứ nhất, ta được: 3(x2 1)(x m) (x3 3x 2) 0 (x 1)(3x2 3(1 m)x 3m) (x 1)(x2 x 2) 0 (x 1)[2x2 (3m 2)x 3m 2] 0 1 x 1 hoặc 2x2 (3m 2)x 3m 2 0 2 Để từ M kẻ được ba tiếp tuyến thì 1 phải có nghiệm x , đồng thời phải có 3 giá trị k khác nhau, khi đó 2 phải có hai nghiệm phân biệt khác 1 , đồng thời phải có 2 giá trị k khác nhau và khác 0 2 phải có hai nghiệm phân biệt khác 1 khi và chỉ khi: 2 (3m 2)(3m 6) 0 m , m 2 3 3 3m 3 0 m 1 Với điều kiện 3 , gọi x1 ,x2 là hai nghiệm của 2 , khi đó hệ số góc của ba tiếp tuyến là 2 2 k1 3x1 3, k2 3x2 3, k3 0 . Để hai trong ba tiếp tuyến này vuông góc với nhau k1.k2 1 và k1 k2 2 2 2 2 2 k1.k2 1 9(x1 1)(x2 1) 1 9x1 x2 9(x1 x2 ) 18x1x2 10 0 (i) 3m 2 3m 2 Mặt khác theo Định lí Viet x x ; x x . 1 2 2 1 2 2 28 Do đó (i) 9(3m 2) 10 0 m thỏa điều kiện 3 , kiểm tra lại ta thấy k k 27 1 2 28 Vậy, M ;0 là điểm cần tìm. 27 Cách 2: Gọi N(x0 ; y0 ) (C) . Tiếp tuyến của C tại N có phương trình : 2 y 3x0 3 (x x0 ) y0 . 2 đi qua M 0 3x0 3 (m x0 ) y0 2 3(x0 1)(x0 1)(x0 m) (x0 1) (x0 2) 0 x 1 (x 1) 2x2 (3m 2)x 3m 2 0 0 0 0 0 2 2x0 (3m 2)x0 3m 2 0 (a) Từ M vẽ được đến C ba tiếp tuyến (a) có hai nghiệm phân biệt khác 1 , và có hai 2 giá trị k 3x0 3 khác nhau và khác 0 điều đó xảy ra khi và chỉ khi:
  2. m 1 (3m 2)2 8(3m 2) 0 (3m 2)(3m 6) 0 2 (b) . 2 2(3m 2) 0 3m 3 0 m ,m 2 3 Vì tiếp tuyến tại điểm có hoành độ x 1 có hệ số góc bằng 0 nên yêu cầu bài toán ( 3p2 3)( 3q2 3) 1(trong đó p,q là hai nghiệm của phương trình (a) ) 9p2q2 9(p2 q2 ) 10 0 9p2q2 9(p q)2 18pq 10 0 9(3m 2)2 9(3m 2)2 28 28 9(3m 2) 10 0 m . Vậy M ;0 . 4 4 27 27