Trắc nghiệm Đại số Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 1 - Chủ đề 1: Tính đơn điệu - Dạng 4: Xét tính đơn điệu của hàm số (biết y, y’) - Mức độ 3 - Năm học 2017-2018 (Có đáp án)

doc 4 trang xuanthu 200
Bạn đang xem tài liệu "Trắc nghiệm Đại số Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 1 - Chủ đề 1: Tính đơn điệu - Dạng 4: Xét tính đơn điệu của hàm số (biết y, y’) - Mức độ 3 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • doctrac_nghiem_dai_so_lop_12_tach_tu_de_thi_thu_thpt_quoc_gia_c.doc

Nội dung text: Trắc nghiệm Đại số Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 1 - Chủ đề 1: Tính đơn điệu - Dạng 4: Xét tính đơn điệu của hàm số (biết y, y’) - Mức độ 3 - Năm học 2017-2018 (Có đáp án)

  1. x2 m 1 x 1 Câu 34. [2D1-1.4-3] (SGD Bình Dương - HKI - 2017 - 2018 - BTN) Hàm số y ( 2 x m là tham số) nghịch biến trên mỗi khoảng xác định của nó khi các giá trị của m là: 5 A. m 1. B. m 1. C. m . D. 1 m 1. 2 Lời giải Chọn C x2 4x 2m 1 g x Tập xác định D ¡ \ 2. Đạo hàm: y . 2 x 2 2 x 2 Hàm số nghịch biến trên mỗi khoảng xác định của nó khi và chỉ khi y 0, x D ( Dấu ' ' chỉ xảy ra tại hữu hạn điểm trên D ) g x x2 4x 2m 1 0, x ¡ 5 Điều kiện: 0 (vì a 1 0 ) 4 1 . 2m 1 0 2m 5 0 m . 2 Câu 16. [2D1-1.4-3] (THPT Hoa Lư A-Ninh Bình-Lần 1-2018) Cho hàm số y f x liên tục trên ¡ và có đạo 2 3 hàm f x x 1 x 1 2 x . Hàm số y f x đồng biến trên khoảng nào dưới đây? A. 1;2 . B. ; 1 . C. 1;1 . D. 2; . Lời giải Chọn A x 1 Ta có 2 3 . f x 0 x 1 x 1 2 x 0 x 1 x 2 Lập bảng xét dấu của f x ta được: Vậy hàm số y f x đồng biến trên khoảng 1;2 . Câu 42: [2D1-1.4-3](THPT Thăng Long - Hà Nội - Lần 2 - Năm 2018) Cho hàm số y f x có f x x 2 x 5 x 1 . Hàm số y f x2 đồng biến trên khoảng nào dưới đây? A. 0;1 . B. 1;0 . C. 2; 1 . D. 2;0 . Lời giải Chọn B Xét dấu f x :
  2. x 0 x 0 x 0 x2 2 2 2 Ta có: y f (x ) 2x. f x 0 2 x 2 . f x 0 x2 5 2 x 2 x 1 Chọn x 1 0; 2 ta có y 1 2.1. f 12 2. f 1 0. Do đó, cả khoảng 0; 2 âm. Từ đó ta có trục xét dấu của y f x2 như sau: Từ trục xét dấu trên ta thấy: Hàm số y f x2 đồng biến trên 1;0 . Câu 5: [2D1-1.4-3] (THPT Ninh Giang - Hải Dương - HKII - 2017 - 2018 - BTN) Cho hàm số y f x . Đồ thị của hàm số y f x như hình bên. Đặt g x f x x . Mệnh đề nào dưới đây đúng? y 2 1 x 1 O 1 2 1 A. g 1 g 1 g 2 .B. g 2 g 1 g 1 . C. g 2 g 1 g 1 .D. g 1 g 1 g 2 . Lời giải Chọn B x 1 Xét hàm số g x f x x , g x f x 1, g x 0 f x 1 x 1 . x 2 Bảng biến thiên x – ∞ -1 1 2 + ∞ g' + 0 – 0 - 0 + g(-1) g g(1) + ∞ g(2) – ∞ Vậy g 2 g 1 g 1 . Câu 35: [2D1-1.4-3] (Chuyên Lương Thế Vinh – Đồng Nai – 2017 - 2018 - BTN) Cho hàm số y f x có đạo hàm trên ¡ thỏa f 2 f 2 0 và đồ thị hàm số y f x có dạng như hình vẽ bên dưới.
  3. 2 Hàm số y f x nghịch biến trên khoảng nào trong các khoảng sau: 3 A. 1; . B. 2; 1 . C. 1;1 .D. 1;2 . 2 Lời giải Chọn D Dựa vào đồ thị hàm số y f x ta lập được bảng biến thiên của y f x như sau: Dựa vào bảng biến thiên ta thấy f x 0, x ¡ . 2 Xét hàm số y f x , ta có y 2 f x . f x . 2 Do Oxyz và f x 0, x 1;2  ; 2 nên hàm số y f x nghịch biến trên khoảng ; 2 và 1;2 . Câu 742: [2D1-1.4-3] Tìm tất cả giá trị của tham số m để hàm số y mx2 m 6 x nghịch biến trên khoảng 1; . A. m 2 .B. 2 m 0 .C. 2 m 0 .D. m 2 . Lời giải Chọn B y 2mx m 6 . Theo yêu cầu bài toán ta có y 0, x 1; . 6 2mx m 6 0 m . 2x 1 6 Xét hàm số g x với x 1; . 2x 1 . Vậy 2 m 0 . Câu 39: [2D1-1.4-3] (THPT Ngọc Tảo - Hà Nội - 2018 - BTN – 6ID – HDG) Cho hàm số y f x . Hàm số y f ' x có đồ thị như hình vẽ. Mệnh đề nào sau đây sai? A. f x có một cực tiểu B. f x có hai cực đại C. f x đồng biến trên khoảng 1; D. f x nghịch biến trên khoảng 2;0
  4. Lời giải Chọn C x 2 Ta có: f x 0 x 0 . x 1 Dựa vào đồ thị ta có bảng biến thiên sau Do đó f x nghịch biến trên khoảng 1; .