Trắc nghiệm Đại số Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 1 - Chủ đề 2: Cực trị - Dạng 6: Tìm cực trị, điểm cực trị (biết y,y’) - Mức độ 4 - Năm học 2017-2018 (Có đáp án)

doc 2 trang xuanthu 40
Bạn đang xem tài liệu "Trắc nghiệm Đại số Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 1 - Chủ đề 2: Cực trị - Dạng 6: Tìm cực trị, điểm cực trị (biết y,y’) - Mức độ 4 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • doctrac_nghiem_dai_so_lop_12_tach_tu_de_thi_thu_thpt_quoc_gia_c.doc

Nội dung text: Trắc nghiệm Đại số Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 1 - Chủ đề 2: Cực trị - Dạng 6: Tìm cực trị, điểm cực trị (biết y,y’) - Mức độ 4 - Năm học 2017-2018 (Có đáp án)

  1. Câu 47: [2D1-2.6-4](THPT LƯƠNG TÀI - BẮC NINH - LẦN 2 - 2017 - 2018 - BTN) Khi đồ thị hàm số y x3 bx2 cx d có hai điểm cực trị và đường thẳng nối hai điểm cực trị ấy đi qua gốc tọa độ, hãy tìm giá trị nhỏ nhất minT của biểu thức T bcd bc 3d . A. minT 4.B. minT 6. C. minT 4 .D. minT 6 . Lời giải Chọn A y 3x2 2bx c . Hàm số có hai cực trị y 0 có hai nghiệm phân biệt b2 3c 0 1 1 c 2b2 bc Lấy y chia cho y ta được: y y . x b x d . 3 9 3 9 9 c 2b2 bc Suy ra phương trình đường thẳng đi qua hai điểm cực trị là d : y x d 3 9 9 bc d quaO 0; 0 nên d 0 bc 9d . 9 Khi đó T bcd bc 3d 9d 2 12d 3d 4 2 4 4 . Câu 6: [2D1-2.6-4] (THPT CHuyên Lam Sơn - Thanh Hóa - Lần 2 - 2017 - 2018 - BTN) Cho hàm số f x có đạo hàm f x x 1 4 x 2 5 x 3 3 . Số điểm cực trị của hàm số f x là: A. 5 . B. 3 . C. 1. D. 2 . Lời giải Chọn B x 1 Ta có f x 0 x 2 . x 3 Ta có bảng biến thiên của hàm số f x và f x . x 3 1 2 f x 0 0 0 f x x 2 0 2 f x Dựa vào bảng biến thiên ta thấy số điểm cực trị của hàm số f x là 3 . Câu 46: [2D1-2.6-4] (THPT Quảng Xương 1 - Thanh Hóa- Lần 1- 2017 - 2018 - BTN) Cho hàm số y f x có đạo hàm f x trên khoảng ; . Đồ thị của hàm số y f x như hình vẽ
  2. 2 Đồ thị của hàm số y f x có bao nhiêu điểm cực đại, cực tiểu? A. 2 điểm cực đại, 3 điểm cực tiểu. B. 1 điểm cực đại, 3 điểm cực tiểu. C. 2 điểm cực đại, 2 điểm cực tiểu. D. 3 điểm cực đại, 2 điểm cực tiểu. Lời giải Chọn A Từ đồ thị hàm số ta có bảng biến thiên 2 f x 0 y f x y 2 f x . f x 0 . f x 0 x 0 x x1 Quan sát đồ thị ta có f x 0 x 1 và f x 0 x 1 với x 0;1 và x 1;3 . 1 2 x 3 x x2 f x 0 f x 0 x 3; Suy ra y 0 x 0; x1  1; x2  3; f x 0 x 0; x1  1; x2 f x 0 2 Từ đó ta lập được bảng biến thiên của hàm số y f x Suy ra hàm số có 2 điểm cực đại, 3 điểm cực tiểu.