Trắc nghiệm Đại số Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 1 - Chủ đề 6: Tương giao. Điều kiện có nghiệm - Dạng 10: Đồ thị hàm bậc 3 cắt d, thỏa mãn điều kiện theo y - Mức độ 3 - Năm học 2017-2018 (Có đáp án)
Bạn đang xem tài liệu "Trắc nghiệm Đại số Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 1 - Chủ đề 6: Tương giao. Điều kiện có nghiệm - Dạng 10: Đồ thị hàm bậc 3 cắt d, thỏa mãn điều kiện theo y - Mức độ 3 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
trac_nghiem_dai_so_lop_12_tach_tu_de_thi_thu_thpt_quoc_gia_c.doc
Nội dung text: Trắc nghiệm Đại số Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 1 - Chủ đề 6: Tương giao. Điều kiện có nghiệm - Dạng 10: Đồ thị hàm bậc 3 cắt d, thỏa mãn điều kiện theo y - Mức độ 3 - Năm học 2017-2018 (Có đáp án)
- Câu 42. [2D1-6.10-3] (SỞ GD VÀ ĐT THANH HÓA-2018) Cho đồ thị hàm số 3 2 f x x bx cx d cắt trục hoành tại 3 điểm phân biệt có hoành độ x1 , x2 , x3 . Tính giá trị biểu 1 1 1 thức P . f x1 f x2 f x3 1 1 A. P .B. P 0 . C. P b c d . D. P 3 2b c . 2b c Lời giải Chọn B 3 2 Do đồ thị hàm số f x x bx cx d cắt trục hoành tại 3 điểm phân biệt có hoành độ x1 , x2 , x3 nên f x x x1 x x2 x x3 . f x x x2 x x3 x x1 x x3 x x1 x x2 . 1 1 1 1 1 1 Ta có P f x1 f x2 f x3 x1 x2 x1 x3 x2 x1 x2 x3 x3 x1 x3 x2 x x x x x x 2 3 3 1 1 2 0 . Vậy P 0 . x1 x2 x2 x3 x3 x1 Câu 35: [2D1-6.10-3] (Lương Văn Chánh - Phú Yên – 2017 - 2018 - BTN) Cho hàm số y f x 22018 x3 3.22018 x2 2018 có đồ thị cắt trục hoành tại 3 điểm phân biệt có hoành độ 1 1 1 x1 , x2 , x3 . Tính giá trị biểu thức: P f x1 f x2 f x3 A. P 3.22018 1.B. P 22018 .C. P 0 .D. P 2018 . Lời giải Chọn C Ta có f x 3.22018 x2 2x . Do đồ thị hàm số y f x 22018 x3 3.22018 x2 2018 cắt trục hoành tại 3 điểm phân biệt có x x x 3 1 2 3 hoành độ x1 , x2 , x3 nên theo định lý vi-et ta có: x1x2 x2 x3 x3 x1 0 (1). 2018 x x x 1 1 3 22018 2 Ta có f x f x 3.22018 x x 2 2x x x x 4x x . 1 2 1 2 1 2 1 2 1 2 2 f x f x 3.22018 x x 2 2x x x x 4x x 2 3 2 3 2 3 2 3 2 3 2 f x f x 3.22018 x x 2 2x x x x 4x x 1 3 1 3 1 3 1 3 1 3 f x1 f x2 f x2 f x3 f x3 f x1 2018 2 2 3.2 x x x x x x 4 x x x x x x (2). 1 2 2 3 3 2 1 2 2 3 3 1 Thay (1) vào (2) ta có f x1 f x2 f x2 f x3 f x3 f x1 0 (3). 1 1 1 f x f x f x f x f x f x Mặt khác P 1 2 2 3 3 1 (4). f x1 f x2 f x3 f x1 f x2 f x2 Thay (3) vào (4) ta có P 0 .
- Câu 39. [2D1-6.10-3] (THPT Chuyên Hạ Long - QNinh - Lần 1 - 2017 - 2018 - BTN) Tìm tất cả giá trị thực của tham số m để đồ thị hàm số y x3 3mx2 2 có hai điểm cực trị A và B sao cho các điểm A , B và M 1; 2 thẳng hàng. A. m 2 . B. m 2 . C. m 2 . D. m 2 ; m 2 . Hướng dẫn giải Chọn D Ta có: y 3x2 6mx ; y 0 3x2 6mx 0 x 0 , x 2m . Đồ thị hàm số có hai điểm cực trị khi và chỉ khi phương trình y 0 có hai nghiệm phân biệt 2m 0 m 0 . Khi đó hai điểm cực trị là A 0;2 , B 2m;2 4m3 . Ta có MA 1;4 , MB 2m 1;4 4m3 . Ba điểm A , B và M 1; 2 thẳng hàng MA , MB cùng phương 2m 1 4 4m3 2m 1 1 m3 2m 1 m3 1 m3 2m 1 4 1 1 m2 2 m 2 (do m 0 ).