Trắc nghiệm Đại số Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 4 - Bài 4: Max, min - Mức độ 4.4 - Năm học 2017-2018 (Có đáp án)

doc 2 trang xuanthu 1260
Bạn đang xem tài liệu "Trắc nghiệm Đại số Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 4 - Bài 4: Max, min - Mức độ 4.4 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • doctrac_nghiem_dai_so_lop_12_tach_tu_de_thi_thu_thpt_quoc_gia_c.doc

Nội dung text: Trắc nghiệm Đại số Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 4 - Bài 4: Max, min - Mức độ 4.4 - Năm học 2017-2018 (Có đáp án)

  1. Câu 39: [DS12.C4.4.BT.d] [Đề thi thử-Liên trường Nghệ An-L2] Biết rằng hai số phức z1 , z2 thỏa 1 mãn z 3 4i 1 và z 3 4i . Số phức z có phần thực là a và phần ảo là b thỏa mãn 1 2 2 3a 2b 12 . Giá trị nhỏ nhất của P z z1 z 2z2 2 bằng: 9945 9945 A. P .B. P 5 2 3 .C. P . D. P 5 2 5 . min 11 min min 13 min Hướng dẫn giải Chọn C Gọi M1 , M 2 , M lần lượt là điểm biểu diễn cho số phức z1 , 2z2 , z trên hệ trục tọa độ Oxy . Khi đó quỹ tích của điểm M1 là đường tròn C1 tâm I 3;4 , bán kính R 1; quỹ tích của điểm M 2 là đường C2 tròn tâm I 6;8 , bán kính R 1; quỹ tích của điểm M là đường thẳng d :3x 2y 12 0 . Bài toán trở thành tìm giá trị nhỏ nhất của MM1 MM 2 2 . y I 8 2 I B 3 I1 A 4 M O 3 6 x 138 64 Gọi C3 có tâm I3 ; , R 1 là đường tròn đối xứng với C2 qua d . Khi đó 13 13 min MM1 MM 2 2 min MM1 MM 3 2 với M 3 C3 . Gọi A , B lần lượt là giao điểm của đoạn thẳng I1I3 với C1 , C3 . Khi đó với mọi điểm M1 C1 , M 3 C3 , M d ta có MM1 MM 3 2 AB 2 , dấu "=" xảy ra khi 9945 M  A, M  B . Do đó P AB 2 I I 2 2 I I . 1 3 min 1 3 1 3 13 Câu 44: [DS12.C4.4.BT.d] (THPT Chuyên Võ Nguyên Giáp - QB - Lần 1 - 2017 - 2018 - BTN) Cho số phức z1 , z2 thỏa mãn z1 12 và z2 3 4i 5 . Giá trị nhỏ nhất của z1 z2 là: A. 0 . B. 2 C. 7 D. 17 Lời giải Chọn B Gọi z1 x1 y1i và z2 x2 y2i , trong đó x1 , y1 , x2 , y2 R ; đồng thời M1 x1; y1 và M 2 x2 ; y2 lần lượt là điểm biểu diễn các số phức z1 , z2 .
  2. 2 2 x1 y1 144 Theo giả thiết, ta có: 2 2 . x2 3 y2 4 25 Do đó M1 thuộc đường tròn C1 có tâm O 0;0 và bán kính R1 12 , M 2 thuộc đường tròn C2 có tâm I 3;4 và bán kính R2 5. O C2 Mặt khác, ta có nên C2 chứa trong C1 . OI 5 7 R1 R2 M1 M2 (C2) I O (C1) Khi đó z z . Suy ra z z M M . 1 2 M1M 2 1 2 min 1 2 min M1M 2 R1 2R2 2