Trắc nghiệm Đại số Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 4 - Chủ đề 4: Max, min modul - Dạng 1: Max, min của modul - Mức độ 4 - Năm học 2017-2018 (Có đáp án)
Bạn đang xem 20 trang mẫu của tài liệu "Trắc nghiệm Đại số Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 4 - Chủ đề 4: Max, min modul - Dạng 1: Max, min của modul - Mức độ 4 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
trac_nghiem_dai_so_lop_12_tach_tu_de_thi_thu_thpt_quoc_gia_c.doc
Nội dung text: Trắc nghiệm Đại số Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 4 - Chủ đề 4: Max, min modul - Dạng 1: Max, min của modul - Mức độ 4 - Năm học 2017-2018 (Có đáp án)
- Câu 45. [2D4-4.1-4] (Toán Học Tuổi Trẻ - Tháng 12 - 2017) Tìm giá trị lớn nhất của P z2 z z2 z 1 với z là số phức thỏa mãn z 1. 13 A. 3 . B. 3 . C. . D. 5 . 4 Lời giải Chọn C Đặt z a bi a,b ¡ . Do z 1 nên a2 b2 1. Sử dụng công thức: u.v u v ta có: z2 z z z 1 z 1 a 1 2 b2 2 2a . 2 z2 z 1 a bi 2 a bi 1 a2 b2 a 1 2ab b i a2 b2 a 1 2ab b 2 a2 (2a 1)2 b2 2a 1 2 2a 1 (vì a2 b2 1). Vậy P 2a 1 2 2a . 1 TH1: a . 2 Suy ra P 2a 1 2 2a 2 2a 2 2a 3 4 2 3 3 (vì 0 2 2a 2 ). 1 TH2: a . 2 2 1 1 13 Suy ra P 2a 1 2 2a 2 2a 2 2a 3 2 2a 3 . 2 4 4 7 Xảy ra khi a . 16 Câu 42. [2D4-4.1-4](TRƯỜNG CHUYÊN ĐẠI HỌC VINH - LẦN 2 - 2018) Trong các số phức z 2 thỏa mãn z 1 2 z gọi z1 và z2 lần lượt là các số phức có môđun nhỏ nhất và lớn nhất. Khi đó môđun của số phức w z1 z2 là A. w 2 2 .B. w 2 .C. w 2 .D. w 1 2 . Lời giải Chọn A 2 Đặt z a bi a,b ¡ thì z2 1 2 z a bi 1 2 a bi 2 a2 b2 1 2abi 2 a bi a2 b2 1 4a2b2 4 a2 b2 2 a4 b4 1 2a2 6b2 2a2b2 0 a2 b2 1 4b2 0 a2 b2 1 2b a2 b2 1 2b 0 a2 b2 1 2b 0 2 2 a b 1 2b 0 TH1: a2 b2 1 2b 0 a2 b 1 2 2 . Khi đó tập hợp điểm M a;b biểu diễn số phức z là đường tròn có tâm I1 0;1 , bán kính R 2 , giao điểm của OI (trục tung) với đường tròn là M1 0; 2 1 và M 2 0;1 2 w 2 1 i 1 2 i w 2i w 2 TH2: a2 b2 1 2b 0 a2 b 1 2 2 .
- Khi đó tập hợp điểm M a;b biểu diễn số phức z là đường tròn có tâm I2 0; 1 , bán kính R 2 , giao điểm của OI (trục tung) với đường tròn là M 3 0; 2 1 và M 4 0; 2 1 w 2 1 i 1 2 i w 2i w 2 . Với đáp án của trường ĐH Vinh đưa ra là A thì ta chọn số phức M1 và M 3 có w 2 2i w 2 2 nên đề bài chưa chuẩn, có thể chọn phương án B. Câu 39. [2D4-4.1-4] (THPT Lê Hồng Phong - Nam Định - Lần 1 - 2017 - 2018 - BTN) Cho số phức z và w thỏa mãn z w 3 4i và z w 9 . Tìm giá trị lớn nhất của biểu thức T z w . A. maxT 176 . B. maxT 14. C. maxT 4 .D. maxT 106 . Lời giải Chọn D Đặt z x yi x, y ¡ . Do z w 3 4i nên w 3 x 4 y i . Mặt khác z w 9 nên z w 2x 3 2 2y 4 2 4x2 4y2 12x 16y 25 9 2x2 2y2 6x 8y 28 1 . Suy ra T z w x2 y2 3 x 2 4 y 2 . Áp dụng bất đẳng thức Bunyakovsky ta có T 2 2 2x2 2y2 6x 8y 25 2 . 2 2 Dấu " " xảy ra khi x2 y2 3 x 4 y . Từ 1 và 2 ta có T 2 2. 28 25 106 T 106 . Vậy MaxT 106 . Câu 43: [2D4-4.1-4] (Chuyên Thái Bình – Lần 5 – 2018) Cho số phức z thỏa mãn 1 i z 2 1 i z 2 4 2 . Gọi m max z , n min z và số phức w m ni . Tính w 2018 A. 41009 . B. 51009 . C. 61009 . D. 21009 . Lời giải Chọn C Ta có 1 i z 2 1 i z 2 4 2 z 1 i z 1 i 4 . Gọi M là điểm biểu diễn của số phức z , F1 1;1 là điểm biểu diễn của số phức z1 1 i và F2 1; 1 là điểm biểu diễn của số phức z2 1 i . Khi đó ta có MF1 MF2 4 . Vậy tập hợp điểm M biểu diễn số phức z là Elip nhận F1 và F2 làm hai tiêu điểm. Ta có F1F2 2c 2c 2 2 c 2 . Mặt khác 2a 4 a 2 suy ra b a2 c2 4 2 2 . Do đó Elip có độ dài trục lớn là A1A2 2a 4 , độ dài trục bé là B1B2 2b 2 2 . Mặt khác O là trung điểm của AB nên m max z maxOM OA1 a 2 và n min z minOM OB1 b 2 . 2018 Do đó w 2 2i suy ra w 6 w 61009 . Câu 48: [2D4-4.1-4] (THPT Đặng Thúc Hứa - Nghệ An - 2018 - BTN) Cho số phức z thỏa mãn 5 z i z 1 3i 3 z 1 i . Tìm giá trị lớn nhất M của z 2 3i ? 10 A. M B. M 1 13 C. M 4 5 D. M 9 3
- Chọn C Lời giải Gọi A 0;1 , B 1;3 ,C 1; 1 . Ta thấy A là trung điểm của BC MB2 MC2 BC2 BC2 MA2 MB2 MC2 2MA2 2MA2 10 . 2 4 2 Ta lại có : 5 z i z 1 3i 3 z 1 i 5MA MB 3MC 10. MB2 MC2 25MA2 10 2MA2 10 MC 2 5 Mà z 2 3i z i 2 4i z i 2 4i z i 2 5 4 5 . z i 2 5 Dấu " " xảy ra khi a b 1 , với z a bi ; a, b ¡ . 2 4 z 2 3i loai . z 2 5i Câu 49: [2D4-4.1-4] [Chuyên Nguyễn Quang Diệu - Đồng Tháp - 2018 - BTN] Gọi M và m lần z i lượt là giá trị lớn nhất và nhỏ nhất của P , với z là số phức khác 0 và thỏa mãn z M z 2 . Tính tỷ số . m M M M 3 M 1 A. 5 B. 3 C. D. m m m 4 m 3 Lời giải Chọn B z i Gọi T T 1 z i . z Nếu T 1 Không có số phức nào thoả mãn yêu cầu bài toán. i i 1 Nếu T 1 z z 2 T 1 . T 1 T 1 2 1 Vậy tập hợp điểm biểu diễn số phức T là hình tròn tâm I 1;0 có bán kính R . 2
- 3 M OB OI R 2 M 3 . 1 m m OA OI R 2 Câu 45: [2D4-4.1-4] (THPT Chuyên Hà Tĩnh - Lần 1 - 2018 - BTN) Cho số phức z thỏa mãn z 1 i 1, số phức w thỏa mãn w 2 3i 2 . Tìm giá trị nhỏ nhất của z w . A. 13 3 B. 17 3 C. 17 3 D. 13 3 Lời giải Chọn B Gọi M x; y biểu diễn số phức z x iy thì M thuộc đường tròn C1 có tâm I1 1;1 , bán kính R1 1. N x ; y biểu diễn số phức w x iy thì N thuộc đường tròn C2 có tâm I2 2; 3 , bán kính R 2 . Giá trị nhỏ nhất của z w chính là giá trị nhỏ nhất của đoạn MN . 2 Ta có I1I2 1; 4 I1I2 17 R1 R2 C1 và C2 ở ngoài nhau. MNmin I1I2 R1 R2 17 3 Câu 50: [2D4-4.1-4] [THPT Lê Hồng Phong-HCM-HK2-2018] Cho số phức z thỏa z 1. Gọi m , M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của biểu thức P z5 z 3 6z 2 z4 1 . Tính M m . A. m 4 , n 3.B. m 4 , n 3 C. m 4 , n 4 .D. m 4 , n 4. Lời giải Chọn A 2 1 Vì z 1 và z.z z nên ta có z . z Từ đó, P z5 z 3 6z 2 z4 1 z z4 z 4 6 2 z4 1 z4 z 4 6 2 z4 1 . Đặt z4 x iy , với x, y ¡ . Do z 1 nên z4 x2 y2 1 và 1 x, y 1. Khi đó P x iy x iy 6 2 x iy 1 2x 6 2 x 1 2 y2 2 2x 6 2 2x 2 2x 2 1 3 . Do đó P 3 . Lại có 1 x 1 0 2x 2 2 1 2x 2 1 1 P 4 . 4 4 1 3 Vậy M 4 khi z 1 và m 3 khi z i . Suy ra M m 1. 2 2 HẾT Câu 48: [2D4-4.1-4] (THPT Hậu Lộc 2 - Thanh Hóa - 2017 - 2018 - BTN) Cho hai số phức z1, z2 thỏa mãn z1 1 i 2 và z2 iz1 . Tìm giá trị nhỏ nhất m của biểu thức z1 z2 ? A. m 2 1. B. m 2 2 . C. m 2 . D. m 2 2 2 . Lời giải Chọn D
- Đặt z1 a bi; a,b ¡ z2 b ai z1 z2 a b b a i . 2 2 Nên z1 z2 a b b a 2. z1 Ta lại có 2 z1 1 i z1 1 i z1 2 z1 2 2 . Suy ra z1 z2 2. z1 2 2 2 . a b Dấu " " xảy ra khi 0 . 1 1 Vậy m min z1 z2 2 2 2 . Câu 38: [2D4-4.1-4](SGD Hà Nam - Năm 2018) Xét các số phức z a bi , a,b ¡ thỏa mãn 2 1 4 z z 15i i z z 1 . Tính F a 4b khi z 3i đạt giá trị nhỏ nhất 2 A. F 7 . B. F 6 . C. F 5 . D. F 4 . Lời giải Chọn A Ta có 2 4 z z 15i i z z 1 4 a bi a bi 15i i a bi a bi 1 2 2 15 8b 15 2a 1 suy ra b . 8 1 1 2 2 1 1 z 3i 2a 1 2b 6 8b 15 4b2 24b 36 4b2 32b 21 2 2 2 2 15 Xét hàm số f x 4x2 32x 21 với x 8 15 15 f x 8x 32 0,x suy ra f x là hàm số đồng biến trên ; nên 8 8 15 4353 f x f . 8 16 1 1 4353 15 1 Do đó z 3i đạt giá trị nhỏ nhất bằng khi b ;a . 2 2 16 8 2 Khi đó F a 4b 7 . Câu 45: [2D4-4.1-4] [Sở GD và ĐT Cần Thơ - mã 301 - 2017-2018-BTN] Cho số phức z thỏa mãn z 1. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P z 1 z2 z 1 . Giá trị của M.m bằng 13 3 13 3 3 3 3 A. .B. .C. .D. . 4 8 3 8 Lời giải Chọn A Đặt t z 1 z 1 2 nên t 0;2 . Do z 1 nên z.z 1 P z 1 z2 z z.z z 1 z z 1 . Ta có t 2 z 1 2 z 1 z 1 z.z z z 1 2 z z nên z z t 2 2 .
- Vậy P f t t t 2 3 , với t 0;2 . t 2 t 3 khi 3 t 2 2t 1 khi 3 t 2 Khi đó, f t nên f t . 2 t t 3 khi0 t 3 2t 1 khi0 t 3 1 f t 0 t . 2 1 13 f 0 3 ; f ; f 3 3 ; f 2 3. 2 4 13 13 3 Vậy M ; m 3 nên M.m . 4 4 Câu 45: [2D4-4.1-4] (Sở GD Cần Thơ-Đề 302-2018) Cho số phức z thỏa mãn z 1. Giá trị lớn nhất của biểu thức P 1 z 2 1 z bằng A. 5 . B. 6 5 . C. 2 5 . D. 4 5 . Lời giải Chọn B Gọi số phức z x yi , với x, y R . Theo giả thiết, ta có z 1 x2 y2 1. Suy ra 1 x 1. Khi đó, P 1 z 2 1 z x 1 2 y2 2 x 1 2 y2 2x 2 2 2 2x . 2 2 Suy ra P 1 2 2x 2 2 2x hay P 2 5 , với mọi 1 x 1. 3 4 Vậy P 2 5 khi 2 2x 2 2 2x x , y . max 5 5 Câu 39: [2D4-4.1-4] (Sở GD Cần Thơ-Đề 323-2018) Cho số phức z thoả mãn z 3 4i 5 và biểu thức P z 2 2 z i 2 đạt giá trị lớn nhất. Môđun của số phức z bằng A. 10. B. 5 2 . C. 13. D. 10 . Lời giải Chọn B Đặt z x yi với x, y ¡ và gọi M x; y là điểm biểu diễn của z trên Oxy , ta có z 3 4i 5 x 3 2 y 4 2 5 Và P z 2 2 z i 2 x 2 2 y2 x2 y 1 2 4x 2y 3. Như vậy 2 2 2 2 P 4x 2y 3 4 x 3 2 y 4 23 4 2 . x 3 y 4 23 33 x 3 y 4 x 5 t Dấu “=” xảy ra khi và chỉ khi 4 2 y 5 . 4 x 3 2 y 4 10 t 0,5 Vậy P đạt giá trị lớn nhất khi z 5 5i z 5 2 . Câu 44. [2D4-4.1-4] (SỞ GD VÀ ĐT HƯNG YÊN NĂM 2018) Xét số phức z và số phức liên hợp của nó có điểm biểu diễn là M , M . Số phức z 4 3i và số phức liên hợp của nó có điểm biểu diễn lần lượt là N , N . Biết rằng M , M , N , N là bốn đỉnh của hình chữ nhật. Tìm giá trị nhỏ nhất của z 4i 5 .
- 1 4 5 2 A. . B. . C. . D. . 2 13 34 5 Lời giải Chọn A Gọi z a bi M a;b , M a; b . Ta có: z 4 3i a bi 4 3i 4a 3b 3a 4b i N 4a 3b;3a 4b , N 4a 3b; 3a 4b . Vì MM và NN cùng vuông góc với trục Ox nên M , M , N , N là bốn đỉnh của hình chữ 2b 2 6a 8b 2 MM NN a b 0 nhật khi 3a 3b .0 3a 3b . 2b 0 . MN MM b 0,3a 4b 0 b 0,3a 4b 0 2 2 2 2 Khi đó: z 4i 5 a 5 b 4 i a 5 b 4 a 5 4 a 2 2 9 1 1 2a 18a 41 2 a . 2 2 2 1 9 9 Vậy giá trị nhỏ nhất của z 4i 5 là khi a b . 2 2 2 3 5 Câu 48: [2D4-4.1-4](CHUYÊN VINH LẦN 3-2018) Cho các số phức w , z thỏa mãn w i 5 và 5w 2 i z 4 . Giá trị lớn nhất của biểu thức P z 1 2i z 5 2i bằng A. 6 7 .B. 4 2 13 . C. 2 53 . D. 4 13 . Lời giải Chọn C Gọi z x yi , với x, y R . Khi đó M x; y là điểm biểu diễn cho số phức z . Theo giả thiết, 5w 2 i z 4 5 w i 2 i z 4 5i 2 i w i z 3 2i z 3 2i 3. Suy ra M x; y thuộc đường tròn C : x 3 2 y 2 2 9 . Ta có P z 1 2i z 5 2i MA MB , với A 1;2 và B 5;2 . Gọi H là trung điểm của AB , ta có H 3;2 và khi đó: P MA MB 2 MA2 MB2 hay P 4MH 2 AB2 .
- Mặt khác, MH KH với mọi M C nên P 4KH 2 AB2 4 IH R 2 AB2 2 53 . M K 3 11 Vậy Pmax 2 53 khi hay z 3 5i và w i . MA MB 5 5 Câu 165: [2D4-4.1-4] [CHUYÊN PHAN BỘI CHÂU-2017] Cho số phức z thỏa mãn z 2 3i 1. Giá trị lớn nhất của z 1 i là A. 13 2 .B. 4 . C. 6 . D. 13 1. Lời giải Chọn D Gọi z x yi ta có z 2 3i x yi 2 3i x 2 y 3 i . Theo giả thiết x 2 2 y 3 2 1 nên điểm M biểu diễn cho số phức z nằm trên đường tròn tâm I 2;3 bán kính R 1. Ta có z 1 i x yi 1 i x 1 1 y i x 1 2 y 1 2 . 2 Gọi M x; y và H 1;1 thì HM x 1 2 y 1 . Do M chạy trên đường tròn, H cố định nên MH lớn nhất khi M là giao của HI với đường tròn. x 2 3t Phương trình HI : , giao của HI và đường tròn ứng với t thỏa mãn: y 3 2t 2 2 1 3 2 3 2 9t 4t 1 t nên M 2 ;3 ,M 2 ;3 . 13 13 13 13 13 Tính độ dài MH ta lấy kết quả HM 13 1. Câu 166: [2D4-4.1-4] [THTT – 477-2017] Cho z1, z2 , z3 là các số phức thỏa mãn z1 z2 z3 0 và z1 z2 z3 1. Khẳng định nào dưới đây là sai ? 3 3 3 3 3 3 3 3 3 3 3 3 A. z1 z2 z3 z1 z2 z3 . B. z1 z2 z3 z1 z2 z3 . 3 3 3 3 3 3 3 3 3 3 3 3 C. z1 z2 z3 z1 z2 z3 . D. z1 z2 z3 z1 z2 z3 . Lời giải Chọn D Cách 1: Ta có: z1 z2 z3 0 z2 z3 z1 3 3 3 3 z1 z2 z3 z1 z2 z3 3 z1z2 z1z3 z1 z2 z3 3z2 z3 z2 z3 3 3 3 3 3 3 z1 z2 z3 3z1z2 z3 z1 z2 z3 3z1z2 z3 . 3 3 3 z1 z2 z3 3z1z2 z3 3 z1 z2 z3 3 3 3 3 Mặt khác z1 z2 z3 1 nên z1 z2 z3 3 . Vậy phương án D sai. Cách 2: thay thử z1 z2 z3 1vào các đáp án, thấy đáp án D bị sai
- Câu 167: [2D4-4.1-4] [THTT – 477-2017] Cho z1, z2 , z3 là các số phức thỏa z1 z2 z3 1. Khẳng định nào dưới đây là đúng? A. z1 z2 z3 z1z2 z2 z3 z3 z1 . B. z1 z2 z3 z1z2 z2 z3 z3 z1 . C. z1 z2 z3 z1z2 z2 z3 z3 z1 . D. z1 z2 z3 z1z2 z2 z3 z3 z1 . Lời giải Chọn A Cách 1: Kí hiệu Re : là phần thực của số phức. 2 2 2 2 Ta có z1 z2 z3 z1 z2 z3 2Re z1z2 z2 z3 z3 z1 3 2Re z1z2 z2 z3 z3 z1 (1). 2 2 2 2 z1z2 z2 z3 z3 z1 z1z2 z2 z3 z3 z1 2Re z1z2 z2 z3 z2 z3 z3 z1 z3 z1z1z2 z 2 . z 2 z 2 . z 2 z 2 . z 2 2Re z z 2 z z z 2 z z z 2 z 1 2 2 3 3 1 1 2 3 2 3 1 3 1 2 3 2Re z1z3 z2 z1 z3 z2 3 2Re z1z2 z3 z3 z3 z1 (2). Từ 1 và 2 suy ra z1 z2 z3 z1z2 z2 z3 z3 z1 . Các h khác: B hoặc C đúng suy ra D đúngLoại B, C. Chọn z1 z2 z3 A đúng và D sai Cách 2: thay thử z1 z2 z3 1vào các đáp án, thấy đáp án D bị sai Câu 176: [2D4-4.1-4] [2017] Cho số phức z thỏa mãn z 1 2i 3. Tìm môđun lớn nhất của số phức z 2i. A. 26 6 17 . B. 26 6 17 . C. 26 8 17 . D. 26 4 17 . Lời giải Chọn A Gọi z x yi; x ¡ ; y ¡ z 2i x y 2 i . Ta có: 2 2 z 1 2i 9 x 1 y 2 9 . Đặt x 1 3sint; y 2 3cost; t 0; 2 . 2 2 2 z 2i 1 3sint 4 3cost 26 6 sint 4cost 26 6 17 sin t ; ¡ 26 6 17 z 2i 26 6 17 z 2i 26 6 17 . max Câu 178: [2D4-4.1-4] [2017] Cho số phức z thỏa mãn z 1. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P z 1 z2 z 1 . Tính giá trị của M.m . 13 3 39 13 A. . B. . C. 3 3 . D. . 4 4 4 Lời giải Chọn A Gọi z x yi; x ¡ ; y ¡ . Ta có: z 1 z.z 1 Đặt t z 1 , ta có 0 z 1 z 1 z 1 2 t 0; 2 . t2 2 Ta có t2 1 z 1 z 1 z.z z z 2 2x x . 2 2 Suy ra z2 z 1 z2 z z.z z z 1 z 2x 1 2x 1 t2 3 .
- 2 Xét hàm số f t t t 3 ,t 0; 2 . Bằng cách dùng đạo hàm, suy ra 13 13 3 max f t ; min f t 3 M.n . 4 4 1 i Câu 179: [2D4-4.1-4] [2017] Gọi điểm A, B lần lượt biểu diễn các số phức z và z z; z 0 2 trên mặt phẳng tọa độ ( A, B, C và A , B , C đều không thẳng hàng). Với O là gốc tọa độ, khẳng định nào sau đây đúng? A. Tam giác OAB đều. B. Tam giác OAB vuông cân tại O . C. Tam giác OAB vuông cân tại B . D. Tam giác OAB vuông cân tại A . Lời giải Chọn C 1 i 1 i 2 Ta có: OA z ; OB z .z . z z 2 2 2 1 i 1 i 2 Ta có: BA OA OB BA z z z z . z z 2 2 2 Suy ra: OA2 OB2 AB2 và AB OB OAB là tam giác vuông cân tại B . Câu 180: [2D4-4.1-4] [2017] Cho số phức z thỏa mãn điều kiện z2 4 2 z . Khẳng định nào sau đây là đúng? 3 1 3 1 A. z . B. 5 1 z 5 1. 6 6 2 1 2 1 C. 6 1 z 6 1. D. z . 3 3 Lời giải Chọn B Áp dụng bất đẳng thức u v u v , ta được 2 2 2 z 4 z2 4 4 z z 2 z 4 0 z 5 1 2 2 2 z z z2 4 z2 4 z 2 z 4 0 z 5 1 Vậy, z nhỏ nhất là 5 1, khi z i i 5 và z lớn nhất là 5 1, khi z i i 5. Câu 188: [2D4-4.1-4] [2017] Gọi z x yi x, y R là số phức thỏa mãn hai điều kiện 2 2 3 3 z 2 z 2 26 và z i đạt giá trị lớn nhất. Tính tích xy. 2 2 9 13 16 9 A. xy . B. xy . C. xy . D. xy . 4 2 9 2 Lời giải Chọn D
- Đặt z x iy x, y R . Thay vào điều kiện thứ nhất, ta được x2 y2 36. Đặt x 3cost, y 3sint. Thay vào điều kiện thứ hai, ta có 3 3 P z i 18 18sin t 6. 2 2 4 3 3 2 3 2 Dấu bằng xảy ra khi sin t 1 t z i. 4 4 2 2 Câu 196: [2D4-4.1-4] [2017] Biết số phức z thỏa mãn đồng thời hai điều kiện z 3 4i 5 và biểu 2 2 thức M z 2 z i đạt giá trị lớn nhất. Tính môđun của số phức z i. A. z i 2 41 B. z i 3 5. C. z i 5 2 D. z i 41. Lời giải Chọn D 2 2 Gọi z x yi; x ¡ ; y ¡ . Ta có: z 3 4i 5 C : x 3 y 4 5 : tâm I 3; 4 và R 5. Mặt khác: 2 2 2 2 M z 2 z i x 2 y2 x2 y 1 4x 2y 3 d : 4x 2y 3 M 0. Do số phức z thỏa mãn đồng thời hai điều kiện nên d và C có điểm chung 23 M d I;d R 5 23 M 10 13 M 33 2 5 4x 2y 30 0 x 5 M 33 2 2 z i 5 4i z i 41. max x 3 y 4 5 y 5 Câu 47: [2D4-4.1-4](THPT Chuyên Quốc Học Huế-Lần 3-2018-BTN) Cho z x yi với x , y ¡ là số phức thỏa mãn điều kiện z 2 3i z i 2 5 . Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P x2 y2 8x 6y . Tính M m . 156 156 A. 20 10 . B. 60 20 10 . C. 20 10 . D. 60 2 10 . 5 5 Lời giải Chọn B 6 y 4 B 2 2 x x 15 10 5 -1 5 10 15 -1 I K 2 J 4 6 A 8 10
- - Theo bài ra: z 2 3i z i 2 5 x 2 2 y 3 2 x 2 2 y 1 2 5 2x y 2 0 2 2 x 2 y 1 25 tập hợp điểm biểu diễn số phức z là miền mặt phẳng T thỏa mãn 2x y 2 0 2 2 x 2 y 1 25 - Gọi A 2; 6 , B 2;2 là các giao điểm của đường thẳng 2x y 2 0 và đường tròn C : x 2 2 y 1 2 25 . - Ta có: P x2 y2 8x 6y x 4 2 y 3 2 P 25 . Gọi C là đường tròn tâm J 4; 3 , bán kính R P 25 . - Đường tròn C cắt miền T khi và chỉ khi JK R JA IJ IK R IA 2 10 5 25 P 3 5 40 20 10 P 20 M 20 và m 40 20 10 . Vậy M m 60 20 10 . Câu 42: [2D4-4.1-4](THPT HAU LOC 2_THANH HOA_LAN2_2018_BTN_6ID_HDG) Cho các số phức z , z1 , z2 thỏa mãn z1 4 5i z2 1 và z 4i z 8 4i . Tính M z1 z2 khi P z z1 z z2 đạt giá trị nhỏ nhất. A. 41 . B. 6 . C. 2 5 . D. 8 . Lời giải Chọn C Gọi I 4;5 , J 1;0 . Gọi A, B lần lượt là các điểm biểu diễn số phức z1, z2 . Khi đó A nằm trên đường tròn tâm I bán kính R 1, B nằm trên đường tròn tâm J bán kính R 1. Đặt z x yi , x, y ¡ . Ta có: z 4i z 8 4i x yi 4i x yi 8 4i
- x2 4 y 2 x 8 2 y 4 2 16x 16y 64 0 : x y 4 0 Gọi C là điểm biểu diễn số phức z thì C . Ta có: P z z1 z z2 CA CB . 4 5 4 5 1 0 4 3 d I, 1 R , d J, 1 R . 12 1 2 2 12 1 2 2 xI yI 4 xJ yJ 4 4 5 4 1 0 4 0 hai đường tròn không cắt và nằm cùng phía với . Gọi A1 là điểm đối xứng với A qua , suy ra A1 nằm trên đường tròn tâm I1 bán kính R 1(với I1 là điểm đối xứng với I qua ). Ta có I1 9;0 . A1 A Khi đó: P CA CB CA1 CB A1B nên Pmin A1Bmin . B B 1 7 Khi đó: I A I J A 8;0 ; I B I J B 2;0 . 1 8 1 1 8 1 A 4;4 Như vậy: Pmin khi A đối xứng A qua và B B . Vậy B 2;0 M z1 z2 AB 20 2 5 . Câu 47: [2D4-4.1-4] [SGD NINH BINH _ 2018 _ BTN _ 6ID _ HDG] Xét các số phức z a bi ( a , 2018 b ¡ ) có môđun bằng 2 và phần ảo dương. Tính giá trị biểu thức S 5 a b 2 khi biểu thức P 2 z 3 2 z đạt giá trị lớn nhất. A. S 1.B. S 22018 .C. S 21009 .D. S 0 . Lời giải Chọn D z a bi ; z 2 a2 b2 2 a2 b2 4 . P 2 z 3 2 z a 2 2 b2 3 2 a 2 b2 4a 8 3 8 4a . 4a 8 3 8 4a 12 32 8 4a 8 4a 4 10 . 4a 8 8 4a 8 Dấu đẳng thức xẩy ra khi 9 4a 8 8 4a a . 1 3 5 8 6 Với a b (do b 0 ). 5 5 2018 8 6 8 6 Vậy min P 4 10 z i . Khi đó S 5 2 0 . 5 5 5 5 Câu 44: [2D4-4.1-4] (Sở GD Thanh Hoá – Lần 1-2018 – BTN) Cho số phức z thỏa mãn z 2 i 1 z 2 i 1 10 . Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z . Tính tổng S M m . A. S 9 . B. S 8. C. S 2 21 . D. S 2 21 1. Lời giải
- Chọn C Giả sử z a bi , a,b ¡ z a bi . Chia hai vế cho i ta được: z 2 i z 2 i 10 . Đặt M a;b , N a; b , A 2;1 , B 2; 1 , C 2;1 NB MC . X 2 Y 2 Ta có: MA MC 10 M E : 1. 25 21 Elip này có phương trình chính tắc với hệ trục tọa độ IXY , I 0;1 là trung điểm AC . 2 X x x2 y 1 Áp dụng công thức đổi trục 1. Y y 1 25 21 a 5sin t 2 2 2 2 2 2 Đặt , t 0;2 z OM a b 25sin t 1 21cost b 1 21cost 26 4cos2 t 2 21cost . a 0 z 1 21 cost 1 . max b 1 21 a 0 z 1 21 cost 1 . min b 1 21 M m 2 21 . Câu 35. [2D4-4.1-4](SỞ GD-ĐT HẬU GIANG-2018-BTN) Cho hai số phức z, z thỏa mãn z 5 5 và z 1 3i z 3 6i . Tìm giá trị nhỏ nhất của z z . 5 5 A. . B. . C. 10 . D. 3 10 . 2 4 Hướng dẫn giải Chọn A Gọi M x; y là điểm biểu diễn của số phức z x yi , N x ; y là điểm biểu diễn của số phức z x y i .
- Ta có z 5 5 x 5 yi 5 x 5 2 y2 52 . Vậy M thuộc đường tròn C : x 5 2 y2 52 z 1 3i z 3 6i x 1 y 3 i x 3 y 6 i x 1 2 y 3 2 x 3 2 y 6 2 8x 6y 35 Vậy N thuộc đường thẳng :8x 6y 35 Dễ thấy đường thẳng không cắt C và z z MN Áp dụng bất đẳng thức tam giác, cho bộ ba điểm I, M , N ta có. 8. 5 6.0 5 5 MN IN IM IN R IN0 R d I, R 5 82 62 2 Dấu bằng đạt tại M M 0 ; N N0 . Câu 50. [2D4-4.1-4] (Chuyên Thái Nguyên - 2018 - BTN) Tìm số phức z thỏa mãn z 1 i 5 và biểu thức T z 7 9i 2 z 8i đạt giá trị nhỏ nhất. A. z 5 2i . B. z 1 6i . C. z 1 6i và z 5 2i . D. z 4 5i . Lời giải Chọn B M I K A M0 B Từ giả thiết z 1 i 5 suy ra tập hợp các điểm M biểu diễn số phức z là đường tròn (C) tâm I 1;1 , bán kính R 5. Xét các điểm A 7;9 và B 0;8 . Ta thấy IA 10 2.IM . 1 5 Gọi K là điểm trên tia IA sao cho IK IA K ;3 4 2 IM IK 1 Do , góc M· IK chung IKM ∽ IMA c.g.c IA IM 2 MK IK 1 MA 2.MK . MA IM 2 Lại có: T z 7 9i 2 z 8i MA 2.MB 2 MK MB 2.BK 5 5 5 T 5 5 M BK C , M nằm giữa B và K 0 x . min M 2 Ta có: phương trình đường thẳng BK là: 2x+y-8=0 x 1 2x y 8 0 y 6 Tọa độ điểm M là nghiệm của hệ: M 1;6 . 2 2 x 1 y 1 25 x 5 y 2 Vậy z 1 6i là số phức cần tìm.
- Câu 39: [2D4-4.1-4] [Đề thi thử-Liên trường Nghệ An-L2] Biết rằng hai số phức z1 , z2 thỏa mãn 1 z 3 4i 1 và z 3 4i . Số phức z có phần thực là a và phần ảo là b thỏa mãn 1 2 2 3a 2b 12 . Giá trị nhỏ nhất của P z z1 z 2z2 2 bằng: 9945 9945 A. P .B. P 5 2 3 .C. P . D. P 5 2 5 . min 11 min min 13 min Hướng dẫn giải Chọn C Gọi M1 , M 2 , M lần lượt là điểm biểu diễn cho số phức z1 , 2z2 , z trên hệ trục tọa độ Oxy . Khi đó quỹ tích của điểm M1 là đường tròn C1 tâm I 3;4 , bán kính R 1; quỹ tích của điểm M 2 là đường C2 tròn tâm I 6;8 , bán kính R 1; quỹ tích của điểm M là đường thẳng d :3x 2y 12 0 . Bài toán trở thành tìm giá trị nhỏ nhất của MM1 MM 2 2 . y I 8 2 I B 3 I1 A 4 M O 3 6 x 138 64 Gọi C3 có tâm I3 ; , R 1 là đường tròn đối xứng với C2 qua d . Khi đó 13 13 min MM1 MM 2 2 min MM1 MM 3 2 với M 3 C3 . Gọi A , B lần lượt là giao điểm của đoạn thẳng I1I3 với C1 , C3 . Khi đó với mọi điểm M1 C1 , M 3 C3 , M d ta có MM1 MM 3 2 AB 2 , dấu "=" xảy ra khi 9945 M A, M B . Do đó P AB 2 I I 2 2 I I . 1 3 min 1 3 1 3 13 Câu 44: [2D4-4.1-4] (THPT Chuyên Võ Nguyên Giáp - QB - Lần 1 - 2017 - 2018 - BTN) Cho số phức z1 , z2 thỏa mãn z1 12 và z2 3 4i 5 . Giá trị nhỏ nhất của z1 z2 là: A. 0 . B. 2 C. 7 D. 17 Lời giải Chọn B Gọi z1 x1 y1i và z2 x2 y2i , trong đó x1 , y1 , x2 , y2 R ; đồng thời M1 x1; y1 và M 2 x2 ; y2 lần lượt là điểm biểu diễn các số phức z1 , z2 .
- 2 2 x1 y1 144 Theo giả thiết, ta có: 2 2 . x2 3 y2 4 25 Do đó M1 thuộc đường tròn C1 có tâm O 0;0 và bán kính R1 12 , M 2 thuộc đường tròn C2 có tâm I 3;4 và bán kính R2 5. O C2 Mặt khác, ta có nên C2 chứa trong C1 . OI 5 7 R1 R2 M1 M2 (C2) I O (C1) Khi đó z z M M . Suy ra z z M M M M R 2R 2. 1 2 1 2 1 2 min 1 2 min 1 2 1 2 Câu 23: [2D4-4.1-4] (THPT Ninh Giang - Hải Dương - HKII - 2017 - 2018 - BTN) Cho các số phức z thỏa mãn z 4 3i 2. Giả sử biểu thức P z đạt giá trị lớn nhất, giá trị nhỏ nhất khi z lần lượt bằng z1 a1 b1i a1,b1 ¡ và z2 a2 b2i a2 ,b2 ¡ . Tính S a1 a2 A. S 4 . B. S 6 .C. S 8. D. S 10 . Lời giải Chọn C Gọi z a bi , a,b ¡ z 4 3i 2 a ib 4 3i 2 a 4 b 3 i 2 a 4 2 b 3 2 4 Khi đó tập hợp các điểm M a;b biểu diễn số phức z a bi thuộc vào đường tròn C có tâm I 4; 3 , R 2 . Ta có OI 32 42 5 . Suy ra z OI R 5 2 7 , z OI R 5 2 3. max min Gọi là đường thẳng qua hai điểm OI ta có phương trình của :3x 4y 0 . Gọi M và N lần lượt là hai giao điểm của và C sao cho OM 3 và ON 7 khi đó 3 12 9 28 21 OM OI M ; z i 5 5 5 1 5 5 28 12 S 8. 7 28 21 12 9 5 5 ON OI N ; z2 i 5 5 5 5 5 Câu 24: [2D4-4.1-4] (THPT Ninh Giang - Hải Dương - HKII - 2017 - 2018 - BTN) Cho các số phức z thỏa mãn z2 4 z 2i z 1 2i . Tìm giá trị nhỏ nhất của P z 3 2i . 7 A. P 4 . B. P 2 . C. P .D. P 3. min min min 2 min
- Lời giải Chọn D z 2i 0 Ta có z2 4 z 2i z 1 2i z 2i z 2i z 1 2i 0 . z 2i z 1 2i Do đó tập hợp các điểm N biểu diễn số phức z trên mặt phẳng tọa độ Oxy là điểm A 0;2 và đường trung trực của đoạn thẳng BC với B 0; 2 , C 1; 2 . 1 Ta có BC 1;0 , M ;0 là trung điểm BC nên phương trình đường trung trực của BC là 2 : 2x 1 0 . 7 Đặt D 3;2 , DA 3, d D, . 2 Khi đó P z 3 2i DN , với N là điểm biểu diễn cho z . Suy ra min P min DA,d D, 3 . Câu 25: [2D4-4.1-4] (THPT Ninh Giang - Hải Dương - HKII - 2017 - 2018 - BTN) Cho các số phức z thỏa mãn z 1 i z 8 3i 53 . Tìm giá trị lớn nhất của P z 1 2i . 185 A. P 53. B. P .C. P 106 . D. P 53 . max max 2 max max Lời giải Chọn C Xét A 1;1 , B 8;3 ta có AB 53 các điểm biểu diễn z là đoạn thẳng AB P z 1 2i MM với M là điểm biểu diễn số phức z , M là điểm biểu diễn số phức z 1 2i Phương trình đường thẳng AB : 2x 7y 5 0 87 13 Hình chiếu vuông góc của M lên AB là M1 ; 53 53 Ta có A nằm giữa M1 và B nên P MM lớn nhất MM1 lớn nhất M B z 8 3i Pmax 106 . Câu 50: [2D4-4.1-4] (SGD - Quảng Nam - Lần 1 - 2017 - 2018 - BTN) Cho số phức z thỏa mãn z 2 . Giá trị nhỏ nhất của biểu thức P 2 z 1 2 z 1 z z 4i bằng: 14 7 A. 4 2 3 . B. 2 3 . C. 4 . D. 2 . 15 15 Lời giải Chọn A Gọi z x yi, x, y ¡ . Theo giả thiết, ta có z 2 x2 y2 4 . Suy ra 2 x, y 2 . Khi đó, P 2 z 1 2 z 1 z z 4i 2 x 1 2 y2 x 1 2 y2 y 2 P 2 x 1 2 y2 1 x 2 y2 y 2 2 2 1 y2 2 y . Dấu “ ” xảy ra khi x 0 .
- Xét hàm số f y 2 1 y2 2 y trên đoạn 2; 2 , ta có: 2y 2y 1 y2 1 f y 1 ; f y 0 y . 1 y2 1 y2 3 1 Ta có f 2 3 ; f 2 4 2 5 ; f 2 2 5 . 3 1 Suy ra min f y 2 3 khi y . 2; 2 3 1 Do đó P 2 2 3 4 2 3 . Vậy P 4 2 3 khi z i . min 3 HẾT ĐÁP ÁN THAM KHẢO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 D C A B A D C C B C A D C D A C B C D B B A D D C 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 A A C C A B A B D D C B C A D C B B B D D B A C A Câu 41: [2D4-4.1-4] (PTNK Cơ Sở 2 - TPHCM - 2017 - 2018 - BTN) Nếu z là số phức thỏa z z 2i thì giá trị nhỏ nhất của z i z 4 là A. 2 .B. 3 .C. 4 . D. 5 . Lời giải Chọn D Đặt z x yi với x , y ¡ theo giả thiết z z 2i y 1. d Vậy tập hợp các điểm biểu diễn số phức z là đường thẳng d . Gọi A 0;1 , B 4;0 suy ra z i z 4 P là tổng khoảng cách từ điểm M x; 1 đến hai điểm A , B . Thấy ngay A 0;1 và B 4;0 nằm cùng phía với d . Lấy điểm đối xứng với A 0;1 qua đường thẳng d ta được điểm A 0; 3 . Do đó khoảng cách ngắn nhất là A B 32 42 5 . Câu 48: [2D4-4.1-4] (THPT Vũng Tàu - BRVT - HKII - 2017 - 2018 - BTN) Cho số phức z thỏa 1 mãn z 1 i z 3i và số phức w . Tìm giá trị lớn nhất của w . z 4 5 2 5 9 5 7 5 A. w . B. w . C. w . D. w . max 7 max 7 max 10 max 10 Lời giải Chọn B. Đặt z a bi a,b ¡ . 2 2 2 7 z 1 i z 3i a 1 b 1 a2 b 3 a 2b . 2 2 2 2 2 7 2 2 49 7 49 7 z a b 2b b 5b 14b 5 b 2 4 5 20 2 5
- 1 1 2 5 7 63 w . Đẳng thức xảy ra khi b và a . z z 7 5 10 2 5 Vậy w . max 7 Câu 6197: [2D4-4.1-4] [THPT chuyên Lương Thế Vinh] Cho số phức z thỏa mãn z2 2z 5 z 1 2i z 3i 1 . Tính min | w |, với w z 2 2i . 3 1 A. min | w | .B. min | w | .C. min | w | 1.D. min | w | 2 . 2 2 Lời giải Chọn C Ta có z2 2z 5 z 1 2i z 3i 1 z 1 2i z 1 2i z 1 2i z 3i 1 z 1 2i 0 . z 1 2i z 3i 1 Trường hợp 1: z 1 2i 0 w 1 w 1 1 . Trường hợp 2: z 1 2i z 3i 1 . Gọi z a bi (với a,b ¡ ) khi đó ta được 2 2 1 a 1 b 2 i a 1 b 3 i b 2 b 3 b . 2 3 2 9 3 Suy ra w z 2 2i a 2 i w a 2 2 . 2 4 2 Từ 1 , 2 suy ra min | w | 1. Câu 6232. [2D4-4.1-4] [THPT Hoàng Văn Thụ (Hòa Bình) - 2017] Cho z1 , z2 là hai nghiệm của 8 phương trình 6 3i iz 2z 6 9i , thỏa mãn z z . Giá trị lớn nhất của z z 1 2 5 1 2 bằng. 31 56 A. . B. 4 2 . C. 5. D. . 5 5 Lời giải Chọn D Đặt z a bi , a, b ¡ . Ta có 6 3i iz 2z 6 9i a2 b2 6a 8b 24 0 . 2 2 z1 3 4i 1 a 3 b 4 1 z 3 4i 1 . z2 3 4i 1 2 2 hbh 2 Ta lại có: 2 z 3 4i z 3 4i z z 2 z z 6 8i . 1 2 1 2 1 2 64 2 6 2 1 1 z z 6 8i 2 z z 6 8i . 25 1 2 1 2 5 6 56 Ta có: z z z z 6 8i 6 8i z z 6 8i 6 8i 10 . 1 2 1 2 1 2 5 5