Trắc nghiệm Hình học Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 1 - Bài 4: Phép đối xứng tâm - Mức độ 2.4 - Năm học 2017-2018 (Có đáp án)

doc 6 trang xuanthu 1000
Bạn đang xem tài liệu "Trắc nghiệm Hình học Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 1 - Bài 4: Phép đối xứng tâm - Mức độ 2.4 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • doctrac_nghiem_hinh_hoc_lop_11_tach_tu_de_thi_thu_thpt_quoc_gia.doc

Nội dung text: Trắc nghiệm Hình học Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 1 - Bài 4: Phép đối xứng tâm - Mức độ 2.4 - Năm học 2017-2018 (Có đáp án)

  1. Câu 3: [HH11.C1.4.BT.b] Ảnh của điểm M 3; –1 qua phép đối xứng tâm I 1;2 là: A. 2; 1 . B. –1; 5 . C. –1; 3 . D. 5; –4 . Lời giải Chọn B x ' 2a x 1 Ta có: ÑI M M . y ' 2b y 5 Vậy M –1; 5 . Câu 4: [HH11.C1.4.BT.b] Trong mặt phẳng tọa độ Oxy , cho đường thẳng d : x 2 . Trong các đường thẳng sau đường thẳng nào là ảnh của d qua phép đối xứng tâm O ? A. x –2 . B. y 2 . C. x 2 . D. y –2 . Lời giải Chọn A Gọi M x; y d , M x ; y là ảnh của M qua phép đối xứng tâmO . x x Khi đó ta có: M x; y . y y Do M d x 2. Vậy d : x 2 . Câu 6: [HH11.C1.4.BT.b] Trong mặt phẳng tọa độ Oxy , cho đường thẳng d : x y 4 0 . Hỏi trong các đường thẳng sau đường thẳng nào có thể biến thành d qua một phép đối xứng tâm? A. 2x y – 4 0 . B. x y –1 0 . C. 2x – 2y 1 0 . D. 2x 2y – 3 0 . Lời giải Chọn C Qua phép đối xứng tâm đường thẳng d sẽ biến thành đường thẳng d song song hoặc trùng với nó. Khi đó vectơ pháp tuyến của d và d cùng phương nhau. Trong các đáp án chỉ có đáp án C là thỏa. Tập hợp tâm đối xứng đó nằm là đường thẳng cách đều d và d có phương trình là : 4x 4y 7 0 . Câu 7: [HH11.C1.4.BT.b] Hình gồm hai đường tròn phân biệt có cùng bán kính có bao nhiêu tâm đối xứng? A. Không có.B. Một.C. Hai.D. Vô số. Lời giải Chọn B Tâm đối xứng là trung điểm I của đoạn thẳng nối hai tâm.
  2. Câu 12: [HH11.C1.4.BT.b] Trong mặt phẳng Oxy , ảnh của điểm A 5;3 qua phép đối xứng tâm I 4;1 là: 9 A. A 5;3 .B. A –5; –3 .C. A 3; –1 . D. A ;2 . 2 Lời giải Chọn C x 2.4 5 3 + Thay biểu thức tọa độ của phép đối xứng tâm I 4;1 ta được: . y 2.1 3 1 Câu 13: [HH11.C1.4.BT.b] Trong mặt phẳng Oxy , cho đường thẳng d : x y – 2 0 , ảnh của d qua phép đối xứng tâm I 1;2 là đường thẳng: A. d : x y 4 0 .B. d : x y – 4 0 .C. d : x – y 4 0 .D. d : x – y – 4 0 . Lời giải Chọn B + Giả sử phép đối xứng tâm I 1;2 biến điểm M x; y d thành điểm M x ; y ta có: x 2.1 x 2 x x 2 x M 2 x ;4 y . y 2.2 y 4 y y 4 y + M d nên ta có: 2 x 4 y – 2 0 x y 4 0 . Vậy d : x y – 4 0 . Câu 14: [HH11.C1.4.BT.b] Trong mặt phẳng Oxy , ảnh của đường tròn C : x – 3 2 y 1 2 = 9 qua phép đối xứng tâm O 0;0 là đường tròn : A. C : x – 3 2 y 1 2 9 .B. C : x 3 2 y 1 2 9 . C. C : x – 3 2 y –1 2 9 .D. C : x 3 2 y –1 2 9 . Lời giải Chọn D + C có tâm I 3; 1 bán kính R 3. + C là ảnh của đường tròn C qua phép đối xứng tâm O 0;0 nên đường tròn C có tâm I 3;1 bán kính R 3 . Vậy C : x 3 2 y –1 2 9 . Câu 17: [HH11.C1.4.BT.b] Trong mặt phẳng Oxy , ảnh của đường tròn C : x2 y2 1 qua phép đối xứng tâm I 1;0 . A. C : x – 2 2 y2 1.B. C : x 2 2 y2 1 .
  3. C. C : x2 y 2 2 1.D. C : x2 y – 2 2 1. Lời giải Chọn A + C có tâm O 0;0 bán kính R 1. + C là ảnh của đường tròn C qua phép đối xứng tâm I 1;0 nên đường tròn C có tâm O 2;0 bán kính R 1. Vậy C : x – 2 2 y2 1. Câu 18: [HH11.C1.4.BT.b] Trong mặt phẳng Oxy , cho đường tròn C : x –1 2 y – 3 2 16. Giả sử qua phép đối xứng tâm I điểm A 1;3 biến thành điểm B a;b . Ảnh của đường tròn C qua phép đối xứng tâm I là : A. C : x – a 2 y – b 2 1.B. C : x – a 2 y – b 2 4 . C. C : x – a 2 y – b 2 9.D. C : x – a 2 y – b 2 16 . Lời giải Chọn D + C có tâm A 1;3 bán kính R 4 . + C là ảnh của đường tròn C qua phép đối xứng tâm I nên đường tròn C có tâm B a;b bán kính R 4. Vậy C : x – a 2 y – b 2 16 . Câu 20: [HH11.C1.4.BT.b] Trong mặt phẳng Oxy . Phép đối xứng tâm I 1; –2 biến điểm M 2;4 thành điểm: A. M –4;2 .B. M –4;8 .C. M 0;8 . D. M 0; –8 . Lời giải Chọn D + Thay biểu thức tọa độ của phép đối xứng tâm I 1; –2 ta có : x ' 2.1 x 2 2 0 y ' 2. 2 4 8 Vậy M 0; –8 . Câu 21: [HH11.C1.4.BT.b] Trong mặt phẳng Oxy . Phép đối xứng tâm I 1;1 biến đường thẳng d : x y 2 0 thành đường thẳng nào sau đây: A. d : x y 4 0 .B. d : x y 6 0 .C. d : x y – 6 0 .D. d : x y 0 . Lời giải Chọn C + Giả sử phép đối xứng tâm I 1;1 biến điểm M x; y d thành điểm M x ; y ta có: x 2.1 x 2 x x 2 x M 2 x ;2 y . y 2.1 y 2 y y 2 y + M d nên ta có: 2 x 2 y 2 0 x y 6 0 . Vậy d : x y – 6 0 . Câu 22: [HH11.C1.4.BT.b] Trong mặt phẳng Oxy . Phép đối xứng tâm I –1;2 biến đường tròn C : x 1 2 y – 2 2 4 thành đường tròn nào sau đây:
  4. A. C : x 1 2 y – 2 2 4.B. C : x –1 2 y – 2 2 4. C. C : x 1 2 y 2 2 4.D. C : x – 2 2 y 2 2 4 . Lời giải Chọn A + C có tâm A 1;2 bán kính R 2 . + C là ảnh của đường tròn C qua phép đối xứng tâm I –1;2 nên đường tròn C có tâm A 1;2 bán kính R 2. Vậy C : x 1 2 y – 2 2 4. Câu 39: [HH11.C1.4.BT.b] Giả sử H1 là hình gồm hai đường thẳng song song, H2 là hình bát giác đều. Khi đó: A. H1 không có trục đối xứng, không có tâm đối xứng; H2 có 8 trục đối xứng. B. H1 có vô số trục đối xứng, vô số có tâm đối xứng; H2 có 8 trục đối xứng. C. H1 chỉ có một có trục đối xứng, không có tâm đối xứng; H2 có 8 trục đối xứng. D. H1 có vô số trục đối xứng, chỉ có một tâm đối xứng; H2 có 8 trục đối xứng. Lời giải Chọn B H1 H2 Hai đường thẳng song song d1 và d2 có vô số trục đối xứng ( là d3 các đề d1, d2 và các đường thẳng vuông góc d1, d2 ) Hai đường thẳng song song d1 và d2 có vô số tâm đối xứng là các điểm nằm trên d3 H2 có 8 trục đối xứng là 4 đường chéo chính ( đường chéo đi qua tâm) và 4 đường trung trực ( trung trực của hai cạnh đối diện) Câu 46: [HH11.C1.4.BT.b] Trong mặt phẳng Oxy , cho đường thẳng d : Ax By C 0 và điểm I a;b . Phép đối xứng tâm I biến đường thẳng d thành đường thẳng d có phương trình: A. Ax By C – 2 Aa Bb C 0. B. 2Ax 2By 2C – 3 Aa Bb C 0 . C. Ax 3By 2C – 27 0 . D. Ax By C – Aa – Bb – C 0 . Lời giải Chọn A
  5. x 2a x Biểu thức tọa độ của phép đối xứng tâm là y 2b y Ta có d : Ax By C 0 nên A 2a x B 2b y C 0 Do đó Ax By 2Aa 2Bb C 0 hay Ax By C – 2 Aa Bb C 0 Câu 1: [HH11.C1.4.BT.b] Cho hình H gồm hai đường tròn O và O có bán kính bằng nhau và cắt nhau tại hai điểm. Trong những nhận xét sau, nhận xét nào đúng? A. H có hai trục đối xứng nhưng không có tâm đối xứng. B. H có một trục đối xứng. C. H có hai tâm đối xứng và một trục đối xứng. D. H có một tâm đối xứng và hai trục đối xứng. Lời giải A O F O' B Chọn D Hai trục đối xứng là đường thẳng OO và AB . Tâm đối xứng chính là giao của hai trục đối xứng, tức là điểm F . Câu 9: [HH11.C1.4.BT.b] Trong mặt phẳng với hệ tọa độ Oxy , cho đường tròn C : x – 4 2 y 1 2 4 . Phép đối xứng tâm I 1; –1 biến C thành C . Khi đó phương trình của C là: A. x 2 2 y 1 2 4 . B. x – 2 2 y 1 2 4 . C. x – 2 2 y –1 2 4 . D. x 2 2 y –1 2 4 . Lời giải Chọn A Bán kính của đường tròn C là R 2 , tọa độ tâm K 4; 1 . x 2a x Biểu thức tọa độ của phép đối xứng tâm là , do đó tọa độ K là ảnh của K 4; 1 y 2b y x 2 xK 2 qua phép đối xứng tâm I 1; –1 là suy ra K 2; 1 . y 2 yK 1 Phương trình đường tròn ảnh là x 2 2 y 1 2 4 . Câu 14: [HH11.C1.4.BT.b] Hình nào sau đây không có tâm đối xứng? A. Hình vuông. B. Hình tròn.C. Hình tam giác đều. D. Hình thoi. Lời giải Chọn C Hình vuông có tâm đối xứng là giao điểm của hai đường chéo.
  6. Hình tròn có tâm đối xứng là tâm đường tròn. Hình thoi có tâm đối xứng là giao điểm của hai đường chéo. Câu 26: [HH11.C1.4.BT.b] Trong mặt phẳng Oxy , cho hai điểm I 1;2 và M 3;–1 . Trong bốn điểm sau đây điểm nào là ảnh của M qua phép đối xứng tâm I ? A. A 2;1 .B. B –1;5 . C. C –1;3 . D. D 5;–4 . Lời giải Chọn B x 2.1 3 1 + Thay biểu thức tọa độ của phép đối xứng tâm I 1;2 ta được: . y 2.2 1 5 Vậy của M qua phép đối xứng tâm I là B –1;5 . Câu 27: [HH11.C1.4.BT.b] Trong mặt phẳng Oxy , cho đường thẳng : x 2. Trong bốn đường thẳng cho bởi các phương trình sau đường thẳng nào là ảnh của qua phép đối xứng tâm O? A. x –2 . B. y 2 . C. x 2. D. y –2 . Lời giải Chọn A + Giả sử qua phép đối xứng tâm O điểm M x; y thuộc thành điểm M x ; y . + Thay biểu thức tọa độ của phép đối xứng tâm O 0;0 ta được: x x x x M x ; y . y y y y + M x; y thuộc nên ta có: x 2 x 2 . Vậy ảnh của qua phép đối xứng tâm O là đường thẳng: x –2 . Câu 29: [HH11.C1.4.BT.b] Trong mặt phẳng Oxy , cho đường thẳng : x – y 4 0 . Trong bốn đường thẳng cho bởi các phương trình sau đường thẳng nào là ảnh của qua phép đối xứng tâm O? A. x y 4 0 . B. x y – 1 0 . C. 2x – 2 y 1 0 . D. 2x 2 y – 3 0 . Lời giải Chọn A + Giả sử qua phép đối xứng tâm O điểm M x; y thuộc thành điểm M x ; y . + Thay biểu thức tọa độ của phép đối xứng tâm O 0;0 ta được: x x x x M x ; y . y y y y + M x; y thuộc nên ta có: x y 4 0 x y 4 0 . Vậy ảnh của qua phép đối xứng tâm O là đường thẳng: x y 4 0 . Câu 30: [HH11.C1.4.BT.b] Hình gồm hai đường tròn phân biệt có cùng bán kính có bao nhiêu tâm đối xứng? A. 0.B. 1. C. 2. D. vô số. Lời giải Chọn B + Hình gồm hai đường tròn phân biệt có cùng bán kính có 1 tâm đối xứng đó là trung điểm của đoạn nối tâm của hai đường tròn này.