Trắc nghiệm Hình học Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 1 - Bài 7: Phép vị tự - Mức độ 3.3 - Năm học 2017-2018 (Có đáp án)

doc 2 trang xuanthu 840
Bạn đang xem tài liệu "Trắc nghiệm Hình học Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 1 - Bài 7: Phép vị tự - Mức độ 3.3 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • doctrac_nghiem_hinh_hoc_lop_11_tach_tu_de_thi_thu_thpt_quoc_gia.doc

Nội dung text: Trắc nghiệm Hình học Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 1 - Bài 7: Phép vị tự - Mức độ 3.3 - Năm học 2017-2018 (Có đáp án)

  1. Câu 12: [HH11.C1.7.BT.c] Trong mặt phẳng tọa độ Oxy , cho đường thẳng d có phương trình 2x 3y 1 0 và điểm I 1;3 , phép vị tự tâm I tỉ số k 3 biến đường thẳng d thành đường thẳng d ' . Khi đó phương trình đường thẳng d ' là: A. 2x 3y 26 0 .B. 2x 3y 25 0 . C. 2x 3y 27 0 . D. 2x 3y 27 0 . Lời giải Chọn B Đường thẳng d ' có dạng: 2x 3y m 0 .   Lấy A 1;1 d , gọi A' x; y là ảnh của A qua V I ; 3 IA' 3IA 1 .   Ta có: IA 0; 2 ; IA' x 1; y 3 . x 1 0 x 1 Từ 1 A' 1;9 . y 3 6 y 9 Do A' d ' m 25 . Vậy d ' : 2x 3y 25 0 . Câu 41: [HH11.C1.7.BT.c] Trong mặt phẳng Oxy . Cho đường thẳng : 2x y – 3 0 . Phép vị tự tâm O tỉ số k 2 biến đường thẳng thành có phương trình là: A. 2x y 3 0 .B. 2x y – 6 0 . C. 4x – 2 y – 6 0 . D. 4x 2 y – 5 0 . Lời giải Chọn B + Giả sử qua phép vị tự tâm O tỉ số k 2 điểm M x; y thuộc thành điểm M x ; y . + Thay biểu thức tọa độ của phép vị tự tâm O tỉ số k 2 ta được: 1 x x x 2x 2 1 1 M x ; y . y 2y 1 2 2 y y 2 1 1 + Do M x; y thuộc nên ta có: 2. x y 3 0 2x y 6 0 . 2 2 Vậy phép vị tự tâm O tỉ số k 2 biến đường thẳng thành có phương trình là: 2x y – 6 0 . Câu 42: [HH11.C1.7.BT.c] Trong mặt phẳng Oxy . Cho đường thẳng : x y – 2 0 . Phép vị tự tâm O tỉ số k 2 biến đường thẳng thành có phương trình là: A. 2x 2 y 0 . B. 2x 2 y – 4 0 .C. x y 4 0 . D. x y – 4 0 . Lời giải Chọn C + Giả sử qua phép vị tự tâm O tỉ số k 2 điểm M x; y thuộc thành điểm M x ; y . + Thay biểu thức tọa độ của phép vị tự tâm O tỉ số k 2 ta được: 1 x x x 2x 2 1 1 M x ; y . y 2y 1 2 2 y y 2 1 1 + Do M x; y thuộc nên ta có: x y 2 0 x y 4 0 . 2 2 Vậy phép vị tự tâm O tỉ số k 2 biến đường thẳng thành có phương trình là: x y 4 0 .
  2. BÀI 1. ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG