Trắc nghiệm Hình học Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Bài 2: Hai đường thẳng chéo nhau và song song - Mức độ 3.3 - Năm học 2017-2018 (Có đáp án)
Bạn đang xem tài liệu "Trắc nghiệm Hình học Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Bài 2: Hai đường thẳng chéo nhau và song song - Mức độ 3.3 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- trac_nghiem_hinh_hoc_lop_11_tach_tu_de_thi_thu_thpt_quoc_gia.doc
Nội dung text: Trắc nghiệm Hình học Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Bài 2: Hai đường thẳng chéo nhau và song song - Mức độ 3.3 - Năm học 2017-2018 (Có đáp án)
- Câu 12: [HH11.C2.2.BT.c] Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I là trung điểm SA . Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng IBC là: A. Tam giác IBC. B. Hình thang IJCB ( J là trung điểm SD ). C. Hình thang IGBC (G là trung điểm SB ).D. Tứ giác IBCD . Lời giải Chọn B S J I B G C O A D Gọi O là giao điểm của AC và BD, G là giao điểm của CI và SO . Khi đó G là trọng tâm tam giác SAC . Suy ra G là trọng tâm tam giác SBD . Gọi J BG SD . Khi đó J là trung điểm SD . Do đó thiết điện của hình chóp cắt bởi IBC là hình thang IJCB ( J là trung điểm SD ). Câu 13: [HH11.C2.2.BT.c] Cho tứ diện ABCD , M và N lần lượt là trung điểm AB và AC . Mặt phẳng ( ) qua MN cắt tứ diện ABCD theo thiết diện là đa giác T . Khẳng định nào sau đây đúng? A. T là hình chữ nhật. B. T là tam giác. C. T là hình thoi. D. T là tam giác hoặc hình thang hoặc hình bình hành. Lời giải Chọn D A M N D B C qua MN cắt AD ta được thiết diện là một tam giác. qua MN cắt hai cạnh BD và CD ta được thiết diện là một hình thang.
- Đặc biệt khi mặt phẳng này đi qua trung điểm của BD và CD , ta được thiết diện là một hình bình hành.
- Câu 44: [HH11.C2.2.BT.c] Cho hình chóp S.ABCD có đáy ABCD là hình thang, AD//BC , AD 2.BC , M là trung điểm SA . Mặt phẳng MBC cắt hình chóp theo thiết diện là A. tam giác.B. hình bình hành.C. hình thang vuông. D. hình chữ nhật. Lời giải Chọn B Sử dụng định lý ba đường giao tuyến ta có giao tuyến S của MBC với SAD là MN sao cho MN //BC M Ta có: MN //BC//AD nên thiết diện AMND là hình N thang. A B Lại có MN //BC và M là trung điểm SA 1 C MN là đường trung bình, MN AD BC 2 D Vậy thiết diện MNCB là hình bình hành.