Trắc nghiệm Hình học Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 1: Đường thẳng và mặt phẳng - Dạng 8: Tìm giao điểm của đường thẳng và mặt phẳng - Mức độ 1 - Năm học 2017-2018 (Có đáp án)
Bạn đang xem tài liệu "Trắc nghiệm Hình học Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 1: Đường thẳng và mặt phẳng - Dạng 8: Tìm giao điểm của đường thẳng và mặt phẳng - Mức độ 1 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
trac_nghiem_hinh_hoc_lop_11_tach_tu_de_thi_thu_thpt_quoc_gia.doc
Nội dung text: Trắc nghiệm Hình học Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 2 - Chủ đề 1: Đường thẳng và mặt phẳng - Dạng 8: Tìm giao điểm của đường thẳng và mặt phẳng - Mức độ 1 - Năm học 2017-2018 (Có đáp án)
- Câu 1512. [1H2-1.8-1] Cho bốn điểm A, B, C, D không đồng phẳng. Gọi M , N lần lượt là trung điểm của AC và BC . Trên đoạn BD lấy điểm P sao cho BP = 2PD . Giao điểm của đường thẳng CD và mặt phẳng (MNP) là giao điểm của A. CD và NP .B. CD và MN .C. CD và MP .D. CD và AP . Lời giải Chọn A A E M B D P N C Cách 1. Xét mặt phẳng (BCD) chứa CD. Do NP không song song CD nên NP cắt CD tại E . Điểm E Î NP Þ E Î (MNP). Vậy CD Ç(MNP) tại E. ïì N Î BC Cách 2. Ta có íï Þ NP Ì (BCD) suy ra NP, CD đồng phẳng. îï P Î BD Gọi E là giao điểm của NP và CD mà NP Ì (MNP) suy ra CD Ç(MNP)= E . Vậy giao điểm của CD và mp (MNP) là giao điểm E của NP và CD. Câu 522. [1H2-1.8-1] Trong mp , cho bốn điểm A , B , C , D trong đó không có ba điểm nào thẳng hàng. Điểm S mp . Có mấy mặt phẳng tạo bởi S và hai trong số bốn điểm nói trên? A. 4 . B. 5 . C. 6 . D. 8 . Lời giải Chọn C Điểm S cùng với hai trong số bốn điểm A , B , C , D tạo thành một mặt phẳng, từ bốn điểm ta có 6 cách chọn ra hai điểm, nên có tất cả 6 mặt phẳng tạo bởi S và hai trong số bốn điểm nói trên. Câu 523. [1H2-1.8-1] Cho năm điểm A , B , C , D , E trong đó không có bốn điểm nào ở trên cùng một mặt phẳng. Hỏi có bao nhiêu mặt phẳng tạo bởi ba trong số năm điểm đã cho? A. 10. B. 12. C. 8 . D. 14. Lời giải Chọn A Cứ chọn ra ba điểm trong số năm điểm A , B , C , D , E ta sẽ có một mặt phẳng. Từ năm điểm ta có 10 cách chọn ra ba điểm bất kỳ trong số năm điểm đã cho, nên có 10 phẳng tạo bởi ba trong số năm điểm đã cho.
- Câu 568. [1H2-1.8-1] Trong mặt phẳng cho tứ giác ABCD , điểm E . Hỏi có bao nhiêu mặt phẳng tạo bởi ba trong năm điểm A, B,C, D, E ? A. 6 . B. 7 . C. 8 . D. 9 . Lời giải Chọn B Điểm E và 2 điểm bất kì trong 4 điểm A, B,C, D tạo thành 6 mặt phẳng Bốn điểm A, B,C, D tạo thành 1 mặt phẳng. Vậy có tất cả 7 mặt phẳng. Câu 620: [1H2-1.8-1] Một hình chóp có đáy là ngũ giác có số mặt và số cạnh là. A. 5 mặt, 5 cạnh.B. 6 mặt, 5 cạnh.C. 6 mặt, 10 cạnh. D. 5 mặt, 10 cạnh. Lời giải Chọn C Hình chóp ngũ giác có 5 mặt bên và 1 mặt đáy; 5 cạnh bên và 5 cạnh đáy. Câu 625 :[1H2-1.8-1] Cho tứ giác lồi ABCD và điểm S không thuộc mặt phẳng ABCD . Có nhiều nhất bao nhiêu mặt phẳng xác định bởi các điểm A, B,C, D ? A. 5 .B. 6 . C. 7 . D. 8 . Lời giải Chọn A 2 Có C4 1 7 mặt phẳng. Câu 626: [1H2-1.8-1] Cho 2 đường thẳng a,b cắt nhau và không đi qua điểm A . Xác định được nhiều nhất bao nhiêu mặt phẳng bởi a,b và A ? A. 1.B. 2 . C. 3 .D. 4 . Lời giải Chọn C Có 3 mặt phẳng gồm a,b , A,a , A,b . Câu 627: [1H2-1.8-1] Cho bốn điểm A, B,C, D không cùng nằm trong một mặt phẳng. Trên AB, AD lần lượt lấy các điểm M và N sao cho MN cắt BD tại I . Điểm I không thuộc mặt phẳng nào sao đây? A. BCD .B. ABD . C. CMN . D. ACD . Lời giải Chọn D
- A M N I D B C I BD I BCD , ABD . I MN I CMN . Câu 628: [1H2-1.8-1] Trong các hình sau: (I) (II) (III) (IV) A A A C C A D B D B D B C D C B Hình nào có thể là hình biểu diễn của một hình tứ diện ? (Chọn câu đúng nhất) A. I .B. I , II . C. I , II , III . D. I , II , III , IV . Lời giải Chọn B Hình III sai vì đó là hình phẳng. CHƯƠNG III: VECTƠ TRONG KHÔNG GIAN BÀI 1: VECTƠ TRONG KHÔNG GIAN