Trắc nghiệm Hình học Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 3 - Chủ đề 3: Đường thẳng vuông góc mặt phẳng - Dạng 3: Câu hỏi về góc (cho trước hình vẽ) - Mức độ 3 - Năm học 2017-2018 (Có đáp án)

doc 6 trang xuanthu 220
Bạn đang xem tài liệu "Trắc nghiệm Hình học Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 3 - Chủ đề 3: Đường thẳng vuông góc mặt phẳng - Dạng 3: Câu hỏi về góc (cho trước hình vẽ) - Mức độ 3 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • doctrac_nghiem_hinh_hoc_lop_11_tach_tu_de_thi_thu_thpt_quoc_gia.doc

Nội dung text: Trắc nghiệm Hình học Lớp 11 tách từ đề thi thử THPT Quốc gia - Chương 3 - Chủ đề 3: Đường thẳng vuông góc mặt phẳng - Dạng 3: Câu hỏi về góc (cho trước hình vẽ) - Mức độ 3 - Năm học 2017-2018 (Có đáp án)

  1. Câu 43: [1H3-3.3-3] (THPT Chuyên Vĩnh Phúc - lần 1 - 2017 - 2018 - BTN) Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a , tâm O . Gọi M và N lần lượt là trung điểm của SA và BC . Biết rằng góc giữa MN và ABCD bằng 60 , cosin góc giữa MN và mặt phẳng SBD bằng: 41 5 2 5 2 41 A. . B. .C. . D. . 41 5 5 41 Lời giải Chọn C Gọi E , F lần lượt là trung điểm SO ,OB thì EF là hình chiếu của MN trên SBD . Gọi P là trung điểm OA thì PN là hình chiếu của MN trên ABCD . Theo bài ra: M· NP 60 . Áp dụng định lý cos trong tam giác CNP ta được: 2 2 2 2 2 2  3a 2 a 3a 2 a 2 5a NP CP CN 2CP.CN.cos 45 2. . . . 4 4 4 2 2 8 a 10 a 30 a 30 Suy ra: NP , MP NP.tan 60 ; SO 2MP . 4 4 2 SB SO2 OB2 2a 2 EF a 2 . 1 Ta lại có: MENF là hình bình hành ( vì ME và NF song song và cùng bằng OA). 2 Gọi I là giao điểm của MN và EF , khi đó góc giữa MN và mặt phẳng SBD là N· IF . IK a 2 4 2 5 cos N· IF . . IN 2 a 10 5 Câu 14. [1H3-3.3-3] (SGD Bà Rịa - Vũng Tàu - Lần 1 - 2017 - 2018 - BTN) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A . Tam giác SBC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Số đo của góc giữa đường thẳng SA và ABC bằng A. 450 .B. 600 . C. 300 . D. 750 . Lời giải
  2. Chọn B Gọi H là trung điểm của BC , SBC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy nên ta có SH  ABC . Khi đó ta có hình chiếu vuông góc của SA lên ABC là AH . Suy ra góc giữa SA và ABC bằng góc giữa SA và AH bằng góc SAH . 1 3 SH Ta có: AH BC , SH BC . Do đó trong tam giác SAH ta có tan SHA 3 . 2 2 AH Vậy góc SAH 600 . Câu 2355. [1H3-3.3-3] Cho tứ diện ABCD có cạnh AB , BC , BD bằng nhau và vuông góc với nhau từng đôi một. Khẳng định nào sau đây đúng? A. Góc giữa AC và BCD là góc ·ACB . B. Góc giữa AD và ABC là góc ·ADB . C. Góc giữa AC và ABD là góc ·ACB . D. Góc giữa CD và ABD là góc C· BD . Lời giải Chọn A AB  BC Từ giả thiết ta có AB  BCD . AB  CD CD  BC · Do đó AC, BCD ·ACB . CD  AC Câu 2361. [1H3-3.3-3] Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a . Hình chiếu vuông góc của S lên ABC trùng với trung điểm H của cạnh BC . Biết tam giác SBC là tam giác đều.Tính số đo của góc giữa SA và ABC . A. 30 . B. 45. C. 60 . D. 75 .
  3. Lời giải Chọn B S a a C α A H B Ta có: SH  ABC SH  AH ·SA; ABC S· AH . a 3 ABC và SBC là hai tam giác đều cạnh a AH SH 2 a 3 AH SH SHA vuông cân tại H 45 . 2 Câu 2362. [1H3-3.3-3] Cho hình chóp S.ABC có đáy ABC là tam giác vuông cạnh huyền BC a . Hình chiếu vuông góc của S lên ABC trùng với trung điểm BC . Biết SB a . Tính số đo của góc giữa SA và ABC . A. 30 . B. 45. C. 60 . D. 75 . Lời giải Chọn C S a C α A a 2 H B Gọi H là trung điểm của BC suy ra 1 a AH BH CH BC . 2 2 a 3 Ta có: SH  ABC SH SB2 BH 2 . 2
  4. ·SA, ABC S· AH SH tan 3 60 . AH BÀI 4: HAI MẶT PHẲNG VUÔNG GÓC. Câu 12: [1H3-3.3-3] (THPT CHuyên Lam Sơn - Thanh Hóa - Lần 2 - 2017 - 2018 - BTN) Cho hình chóp S.ABCD có đáy là hình vuông cạnh a . SA vuông góc với mặt phẳng ABCD và SA a 6 (hình vẽ). Gọi là góc giữa đường thẳng SB và mặt phẳng SAC . Tính sin ta được kết quả là: 1 2 3 1 A. . B. . C. . D. . 14 2 2 5 Lời giải Chọn A Gọi O là tâm hình vuông ABCD thì BO  SAC ·SB, SAC B· SO . a 2 BO 1 Ta có SB a 7 , sin 2 . SB a 7 14 Câu 24: [1H3-3.3-3] (THPT Phan Chu Trinh - ĐăkLăk - 2017 - 2018 - BTN) Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi M là điểm trên đoạn SD sao cho SM 2MD .
  5. S M A D B C Tan góc giữa đường thẳng BM và mặt phẳng ABCD là 1 5 3 1 A. . B. . C. . D. . 3 5 3 5 Lời giải Chọn D S M A D H O B C a 2 Ta có BD a 2 OD . 2 2 2 2 2 a 2 a 2 Xét tam giác SOD vuông tại O có: SO SD OD a . 2 2 Kẻ MH  BD tại H nên BM ; ABCD M· BH MH MD HD 1 Do MH  BD MH // SO . Ta có . SO SD OD 3 SO a 2 1 a 2 a 2 5a 2 MH và HD OD BH BD HD a 2 . 3 6 3 6 6 6 Xét tam giác BHM vuông tại H có: MH 1 tan BM ; ABCD M· BH tan BM ; ABCD . BH 5 Câu 25: [1H3-3.3-3] (THPT Phan Chu Trinh - ĐăkLăk - 2017 - 2018 - BTN) Cho hình lập phương ABCD.A B C D . Gọi M , N , P lần lượt là trung điểm các cạnh AB , BC ,C D . Xác định góc giữa hai đường thẳng MN và AP . A. 60 . B. 90 C. 30 . D. 45. Lời giải Chọn D
  6. A' B' D' P C' B A M N D C Ta có tứ giác AMC P là hình bình hành nên AP // MC M· N, AP M· N, MC N· MC . Gọi cạnh hình vuông có độ dài bằng a . 3a Xét tam giác C CM vuông tại C có C M C C 2 MC 2 C C 2 BC 2 MB2 . 2 5a Xét tam giác C CN vuông tại C có C N C C 2 CN 2 . 2 AC a 2 Mà MN . 2 2 MC 2 MN 2 C N 2 2 Xét tam giác C CM có cosN· MC 2MC .MN 2 N· MC 45 M· N, AP 45 .