Trắc nghiệm Hình học Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 3 - Bài 3: Phương trình mặt phẳng (Chưa học phương trình đường thẳng) - Mức độ 3.5 - Năm học 2017-2018 (Có đáp án)

doc 4 trang xuanthu 760
Bạn đang xem tài liệu "Trắc nghiệm Hình học Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 3 - Bài 3: Phương trình mặt phẳng (Chưa học phương trình đường thẳng) - Mức độ 3.5 - Năm học 2017-2018 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • doctrac_nghiem_hinh_hoc_lop_12_tach_tu_de_thi_thu_thpt_quoc_gia.doc

Nội dung text: Trắc nghiệm Hình học Lớp 12 tách từ đề thi thử THPT Quốc gia - Chương 3 - Bài 3: Phương trình mặt phẳng (Chưa học phương trình đường thẳng) - Mức độ 3.5 - Năm học 2017-2018 (Có đáp án)

  1. Câu 22: [HH12.C3.3.BT.c] (THPT CHuyên Lam Sơn - Thanh Hóa - Lần 2 - 2017 - 2018 - BTN) Trong không gian với hệ trục tọa độ Oxyz cho mặt cầu S :x2 y2 z2 2x 6y 4z 2 0 , mặt phẳng :x 4y z 11 0 . Gọi P là mặt phẳng vuông góc với , P song song với giá của vecto v 1;6;2 và P tiếp xúc với S . Lập phương trình mặt phẳng P . A. 2x y 2z 2 0 và x 2y z 21 0. B. x 2y 2z 3 0 và x 2y z 21 0. C. 2x y 2z 3 0 và 2x y 2z 21 0 . D. 2x y 2z 5 0 và 2x y 2z 2 0 . Lời giải Chọn C  S có tâm I 1; 3;2 và bán kính R 4 . Véc tơ pháp tuyến của là n 1;4;1 .   Suy ra VTPT của P là n n ,v 2; 1;2 . P Do đó P có dạng: 2x y 2z d 0 . Mặt khác P tiếp xúc với S nên d I, P 4 2 3 4 d d 21 Hay 4 . 22 1 2 22 d 3 Vậy PTMP P : Câu 47: [HH12.C3.3.BT.c] (THPT CHuyên Lam Sơn - Thanh Hóa - Lần 2 - 2017 - 2018 - BTN) Trong không gian với hệ trục tọa độ Oxyz cho các điểm A 1;0;0 , B 0;2;0 , C 0;0;3 , D 2; 2;0 . Có tất cả bao nhiêu mặt phẳng phân biệt đi qua 3 trong 5 điểm O , A , B , C , D ? A. 7 . B. 5 . C. 6 . D. 10. Lời giải Chọn B Ta thấy A , B , C lần lượt thuộc các trục tọa độ Ox , Oy , Oz . Phương trình mặt phẳng ABC x y z là: 1. Rõ ràng D ABC . 1 2 3     Ta cũng có AB 1;2;0 và AD 1; 2;0 nên AB AD , suy ra D nằm trên đường thẳng AB . Bởi vậy, có 5 mặt phẳng phân biệt đi qua 3 trong 5 điểm O , A , B , C , D là OAB , OBC , OAC , ABC và OCD . Câu 19: [HH12.C3.3.BT.c] [NGUYỄN KHUYẾN TPHCM] [2017] Trong không gian với hệ tọa độ Oxyz , hai mặt phẳng 4x 4y 2z 7 0 và 2x 2y z 1 0 chứa hai mặt của hình lập phương. Thể tích khối lập phương đó là 8 81 3 9 3 64 A. V B.V C. V D. V 27 8 . 2 27 Lời giải Chọn A Theo bài ra hai mặt phẳng 4x 4y 2z 7 0 và 2x 2y z 1 0 chứa hai mặt của hình lập phương. Mà hai mặt phẳng (P) : 4x 4y 2z 7 0 và (Q) : 2x 2y z 1 0 song song với nhau nên khoảng cách giữa hai mặt phẳng sẽ bằng cạnh của hình lập phương.
  2. 2 7 3 Ta có M (0;0; 1) (Q) nên d((Q),(P)) d(M ,(P)) 42 ( 4)2 22 2 2 2 2 8 Vậy thể tích khối lập phương là: V . . . 3 3 3 27 Câu 25: [HH12.C3.3.BT.c] [LÝ TỰ TRỌNG – TPHCM] [2017] Trong không gian cho điểm M (1; 3;2) .Có bao nhiêu mặt phẳng đi qua M và cắt các trục tọa độ tại A, B,C mà OA OB OC 0 A. 1. B. 2. C. 3. D. 4. Lời giải Chọn C Giả sử mặt phẳng ( ) cần tìm cắt Ox,Oy,Oz lần lượt tại A(a,0,0),B(0,b,0),C(0,0c)(a,b,c 0) x y z 1 3 2 ( ) : 1; ( ) qua M (1; 3;2) nên: ( ) : 1(*) a b c a b c a b c(1) a b c(2) OA OB OC 0 a b c 0 a b c(3) a b c(4) Thay (1) vào (*) ta có phương trình vô nghiệm 3 Thay (2),(3),(4) vào (*) ta được tương ứng a 4,a 6,a 4 Vậy có 3 mặt phẳng. Câu 26: [HH12.C3.3.BT.c] [LÝ TỰ TRỌNG – TPHCM] [2017] Trong không gian với hệ tọa độ Oxyz cho điểm E(8;1;1) .Viết phương trình mặt phẳng ( ) qua E và cắt nửa trục dương Ox,Oy,Oz lần lượt tại A, B,C sao cho OG nhỏ nhất với G là trọng tâm tam giác ABC . A. x y 2z 11 0 . B. 8x y z 66=0 . C. 2x y z 18 0 . D. x 2y 2z 12 0 . Lời giải Chọn D Cách 1 : 11 11 11 11 121 Với đáp án A: A(11;0;0);B(0;11;0);C(0;0; ) G( ; ; ) OG2 2 3 3 6 4 33 11 15609 Với đáp án B: A( ;0;0);B(0;66;0);C(0;0;66) G( ;22;22) OG2 4 4 16 18 18 Với đáp án C: A(9;0;0);B(0;18;0);C(0;0;18) G(3; ; ) OG2 81 3 3 Với đáp án D: A( 12;0;0);B(0;6;0);C(0;0;6) G( 4;2;2) OG2 24 Cách 2 :
  3. 8 1 1 Gọi A a;0;0 , B 0;b;0 ,C 0;0;c với a,b,c 0 . Theo đề bài ta có : 1. Cần tìm a b c giá trị nhỏ nhất của a2 b2 c2 . 2 2 Ta có a2 b2 c2 4 1 1 a.2 b.1 c.1 6. a2 b2 c2 2a b c Mặt khác a2 b2 c2 4 1 1 a.2 b.1 c.1 8 1 1 2a b c a b c 4 1 1 2 36 a2 Suy ra a2 b2 c2 63 . Dấu '' '' xảy ra khi b2 c2 a 2b 2c. 4 Vậy a2 b2 c2 đạt giá trị nhỏ nhất bằng 216 khi a 12,b c 6 . x y z Vậy phương trình mặt phẳng là : 1 hay x 2y 2z 12 0 . 12 6 6 Câu 33: [HH12.C3.3.BT.c] [BẮC YÊN THÀNH] [2017] Có bao nhiêu mặt phẳng đi qua điểm M (1;9;4) và cắt các trục tọa độ tại các điểm A, B , C (khác gốc tọa độ) sao cho OA OB OC . A. 1. B. 2 . C. 3. D. 4 . Lời giải Chọn D Giả sử mặt phẳng ( ) cắt các trục tọa độ tại các điểm khác gốc tọa độ là A(a;0;0), B(0;b;0),C(0;0;c) với a,b,c 0. x y z Phương trình mặt phẳng ( ) có dạng 1. a b c 1 9 4 Mặt phẳng ( ) đi qua điểm M (1;9;4) nên 1 (1). a b c Vì OA OB OC nên a b c , do đó xảy ra 4 trường hợp sau: +) TH1: a b c. 1 9 4 Từ (1) suy ra 1 a 14, nên phương trình mp ( ) là x y z 14 0. a a a 1 9 4 +) TH2: a b c. Từ (1) suy ra 1 a 6, nên pt mp ( ) là a a a x y z 6 0. 1 9 4 +) TH3: a b c. Từ (1) suy ra 1 a 4, nên pt mp ( ) là a a a x y z 4 0. 1 9 4 +) TH4: a b c. Từ (1) có 1 a 12, nên pt mp ( ) là a a a x y z 12 0.
  4. Vậy có 4 mặt phẳng thỏa mãn. Câu 36: [HH12.C3.3.BT.c] [LƯƠNG TÂM] [2017] Phương trình của mặt phẳng nào sau đây đi qua điểm M 1;2;3 và cắt ba tia Ox , Oy , Oz lần lượt tại A, B , C sao cho thể tích tứ diện OABC nhỏ nhất? A. 6x 3y 2z 18 0 . B. 6x 3y 3z 21 0. C. 6x 3y 3z 21 0 . D. 6x 3y 2z 18 0 . Lời giải Giả sử A(a;0;0), B(0;b;0),C(0;0;c) (a,b,c 0) x y z (ABC): 1 (1) a b c 1 2 3 M(1;2;3) thuộc (ABC): 1. a b c 1 Thể tích tứ diện OABC: V abc 6 1 2 3 6 27.6 1 Áp dụng BDT Côsi ta có: 1 33 1 abc 27 V 27 a b c abc abc 6 a 3 1 2 3 1 Ta có: V đạt giá trị nhỏ nhất V 27 b 6 a b c 3 c 9 Vậy (ABC): 6x 3y 2z 18 0 .