Đề kiểm tra Học kì 2 môn Toán Lớp 12 - Mã đề: 132 - Năm học 2018-2019 - Trường THPT Trưng Vương (Có đáp án)
Bạn đang xem tài liệu "Đề kiểm tra Học kì 2 môn Toán Lớp 12 - Mã đề: 132 - Năm học 2018-2019 - Trường THPT Trưng Vương (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_kiem_tra_hoc_ki_2_mon_toan_lop_12_ma_de_132_nam_hoc_2018.doc
Nội dung text: Đề kiểm tra Học kì 2 môn Toán Lớp 12 - Mã đề: 132 - Năm học 2018-2019 - Trường THPT Trưng Vương (Có đáp án)
- TRƯỜNG THPT TRƯNG VƯƠNG KIỂM TRA HỌC KÌ II NĂM HỌC 2018 - 2019 Môn: Toán – Khối: 12 - Phần trắc nghiệm o0o Thời gian làm bài: 70 phút Họ, tên học sinh: Số báo danh Mã đề 132 Câu 1: Gọi z là số phức thỏa mãn z 3 2i 3 . Khi đó tập hợp điểm biểu diễn số phức w thỏa mãn w z 1 3i là đường tròn nào sau đây ? A. (x 1)2 (y 3)2 9 . B. (x 3)2 (y 2)2 9 . C. (x 2)2 (y 5)2 9 . D. (x 3)2 (y 2)2 9 . Câu 2: Trên tập số phức £ , phương trình z4 z2 2 0 có bao nhiêu nghiệm? A. 1. B. 3. C. 2 . D. 4 . 2 x 1 Câu 3: Tính tích phân I dx . 1 x A. I ln 2 1. B. I ln 2 . C. I 1 ln 2 . D. I 1. e ae4 b b Câu 4: Biết x3 ln2 xdx , với a,b là các số nguyên. Tính giá trị của . 1 32 a 1 1 1 3 A. . B. . C. . D. . 5 32 32 32 2x 1 Câu 5: Đồ thị của hàm số y có bao nhiêu đường tiệm cận ? x 1 A. 4 . B. 2 . C. 3. D. 1. Câu 6: Trong không gian với hệ trục tọa độ Oxyz , cho véctơ a 1; 2;4 và véctơ b x0 ; y0 ; z0 cùng phương với véctơ a . Biết véctơ b tạo với véctơ j (0;1;0) một góc nhọn và b 21 . Tính tổng x0 y0 z0 . A. x0 y0 z0 3. B. x0 y0 z0 3. C. x0 y0 z0 6 . D. x0 y0 z0 6 . Câu 7: Cho hàm số f (x) thỏa mãn f '(x) cos2x 2 và f 2 . Hãy chọn khẳng định đúng. 2 1 1 A. f (x) 2x sin 2x . B. f (x) 2x sin 2x . 2 2 1 C. f (x) 2x sin 2x . D. f (x) 2x sin 2x 2 . 2 Câu 8: Tìm tất cả các giá trị thực của tham số m để phương trình x3 3x m 1 có 3 nghiệm phân biệt. m 3 m 3 A. . B. 1 m 3. C. 1 m 3. D. . m 1 m 1 Câu 9: Biết tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện z 1 2i 3là đường tròn tâm I , bán kính R . Xác định tọa độ tâm I và tính bán kính R . A. I( 1;2), R 9 . B. I( 1;2), R 3 . C. I(1; 2), R 3. D. I(1;2), R 3. Câu 10: Hãy chọn khẳng định đúng . 1 A. cos(2x 1)dx sin(2x 1) C . B. cos(2x 1)dx 2sin(2x 1) C . 2 1 C. cos(2x 1)dx sin(2x 1) C . D. cos(2x 1)dx sin(2x 1) C . 2 Trang 1/4 - Mã đề 132
- 1 3 3 Câu 11: Cho biết f (x)dx 1 và f (x)dx 3 . Tính f (x)dx . 0 1 0 A. 2 . B. 0 . C. 3. D. 1. Câu 12: Trong không gian với hệ trục tọa độ Oxyz , đường thẳng đi qua hai điểm M 2; 3; 4 và N 3; 2; 5 có phương trình chính tắc là x 3 y 2 z 5 x 2 y 3 z 4 A. . B. . 1 1 1 1 1 1 x 3 y 2 z 5 x 2 y 3 z 4 C. . D. . 1 1 1 1 1 1 Câu 13: Trong không gian với hệ trục tọa độ Oxyz , cho mặt phẳng (P) : 2x 2y z 5 0 cắt mặt cầu (S) : (x 2)2 (y 3)2 (z 3)2 100 theo giao tuyến là đường tròn (C) . Tìm diện tích của hình tròn (C) . A. 20 . B. 16 . C. 8 . D. 64 . Câu 14: Trong không gian với hệ trục tọa độ Oxyz , cho mặt phẳng ( ) : 2x y z 1 0 . Véctơ nào sau đây là véctơ pháp tuyến của mặt phẳng ( ) ? A. n (2;1; 1) . B. n ( 2;1; 1) . C. n (2;1;1) D. n ( 2; 1; 1) . Câu 15: Số phức nào dưới đây có hoành độ của điểm biểu diễn là số âm ? A. z 1 i2 . B. z i . C. z 1 i . D. z i2 . Câu 16: Trong các số phức z thỏa mãn z 2 4i z 2i , hãy tìm tổng phần thực và phần ảo của số phức có môđun nhỏ nhất. A. 5 . B. 6 . C. 3. D. 4 . Câu 17: Số phức nào dưới đây có nghịch đảo bằng số phức liên hợp của nó ? A. z 2i . B. z 2 i . C. z i . D. z 1 i . Câu 18: Trong không gian với hệ trục tọa độ Oxyz , viết phương trình mặt phẳng ( ) đi qua ba điểm A(1;0;0), B(0;2;0),C(0;0;3) . A. x 2y 3z 6 0 . B. 6x 3y 2z 6 0 . C. 3x 2y z 6 0 . D. x y z 6 0. Câu 19: Trong không gian với hệ trục tọa độ Oxyz , cho mặt cầu (S) : x2 y2 z2 2x 4y 9 0. Viết phương trình mặt phẳng (P) tiếp xúc với mặt cầu (S) tại điểm M 0; 5;2 . A. x 3y 2z 19 0 . B. x 2y 3z 19 0 . C. x 2y 10 0 . D. 5y 2z 9 0 . Câu 20: Tìm giá trị lớn nhất của hàm số y x4 2x2 3 trên đoạn 0;3. A. 50 . B. 40 . C. 60. D. 70. Câu 21: Số điểm cực trị của đồ thị hàm số y x3 3x2 1 là A. 3. B. 1. C. 4 . D. 2 . Câu 22: Viết phương trình tiếp tuyến của đồ thị hàm số y x3 3x2 2 tại điểm M (1;0) . A. y 3x 2 . B. y 3x 3. C. y 3x . D. y 3x 1. Câu 23: Phần thực của số phức z 2 i là nghiệm của phương trình nào sau đây ? A. x2 2x 6 0 . B. x2 2x 3 0 . C. x2 2x 8 0 . D. x2 x 2 0 . Câu 24: Tính diện tích hình phẳng giới hạn bởi hai đường y x2 3x và y x . 16 32 8 A. . B. . C. 2 . D. . 3 3 3 Trang 2/4 - Mã đề 132
- Câu 25: Trong không gian với hệ trục tọa độ Oxyz , cho hai điểm A(1;2; 3), B(6;5; 1) . Tìm tọa độ điểm C để tứ giác OABC là hình bình hành. A. C( 5; 3; 2) . B. C(5;3;2) . C. C( 3; 5; 2) . D. C(3;5; 2) . Câu 26: Tìm x, y ¡ , biết x 1 2yi 2 2i với i là đơn vị ảo. A. x 1; y 3. B. x 1; y 3. C. x 2; y 1. D. x 3; y 1. Câu 27: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số (C) : y x3 3x2 3 và tiếp tuyến của đồ thị (C) tại điểm có hoành độ x 1. A. 108 . B. 40 . C. 150 . D. 100 . Câu 28: Tính thể tích V của khối tròn xoay tạo nên khi cho quay quanh trục Ox hình phẳng giới hạn bởi các đường y sin x; y 0; x 0; x . 4 2 2 2 A. V 2 . B. V C. V . D. V . 4 4 4 2 4 8 4 4 2 Câu 29: Cho hàm số f (x) liên tục trên đoạn 0;4 và f (x)dx 4 . Tính I f (2x)dx . 0 0 A. 8. B. 2 . C. 4 . D. 1. Câu 30: Trong không gian với hệ trục tọa độ Oxyz , tìm tọa độ của điểm M ' là điểm đối xứng của điểm M (2;1;3) qua mặt phẳng Oxy . A. M '(0; 1;0) . B. M '(2;1; 3) . C. M '( 2;1; 3) . D. M '( 2;1;0) . Câu 31: Trong không gian với hệ trục tọa độ Oxyz , viết phương trình mặt phẳng chứa đường thẳng x t d : y t và cắt mặt cầu (S) : (x 2)2 (y 3)2 (z 3)2 25 theo giao tuyến là một đường tròn có z t bán kính nhỏ nhất. A. 6x y 5z 0 . B. 4x 11y 7z 0 . C. 6x y 5z 0 . D. 4x 11y 7z 0 . Câu 32: Trong không gian với hệ trục tọa độ Oxyz , cho ba điểm A(1; 2;1), B(0;2; 1),C(2; 3;3) . Tìm x 1 y 2 z tọa độ M thuộc đường thẳng d : thỏa mãn MA MB MC đạt giá trị nhỏ nhất. 1 2 1 3 1 1 1 3 4 8 3 4 8 A. M ; 1; . B. M ; 3; . C. M ; ; . D. M ; ; . 2 2 2 2 5 5 5 5 5 5 Câu 33: Trong không gian với hệ trục tọa độ Oxyz , cho mặt phẳng P : x 2y 2z 1 0 và mặt phẳng Q : x 2y 2z 5 0 . Khi đó khoảng cách giữa (P) và (Q) là A. 3 . B. 4 . C. 3 . D. 2 . Câu 34: Trong không gian với hệ trục tọa độ Oxyz , hãy tìm tất cả các giá trị thực của tham số m để x 2 y 1 z 1 đường thẳng d : vuông góc với mặt phẳng ( ) : 6x my 4z 5 0 . 3 1 2 A. m 4 . B. m 5 . C. m 2 . D. m 3 . Câu 35: Cho hai số phức z1 1 i và z2 1 i . Tìm môđun của số phức z1.z2 . A. z1.z2 2. B. z1.z2 3 . C. z1.z2 4. D. z1.z2 1. HẾT Trang 3/4 - Mã đề 132
- TRƯỜNG THPT TRƯNG VƯƠNG KIỂM TRA HỌC KÌ II-TRẮC NGHIỆM NĂM HỌC 2018-2019 Môn: Toán – Khối: 12 o0o Thời gian làm bài: 70 phút ĐÁP ÁN MÃ ĐỀ Câu 132 209 357 485 570 628 743 896 1 C A B D A A C C 2 D A A A C C B B 3 C D C C B C D A 4 A A D D D A A C 5 B C C D A D D A 6 B C C C D A A D 7 A B A C D A B C 8 B C A B A C B D 9 C C C B C B C C 10 C B B D C D B A 11 A D D A A C A B 12 A D B B C A D C 13 D C C B D A B D 14 B A C D A D D C 15 D D C D C B A B 16 D D A C C A C B 17 C A C D D C D A 18 B C B A A D A D 19 A C A A A A A D 20 C C A C A B C B 21 D B B A D D A B 22 B B D A D B B A 23 C A D B A A B C 24 B A B D B B D A 25 B B B A B D C D 26 D B D D C C A B 27 A D D C C A A A 28 D B B C D B B C 29 B B D A B B C A 30 B D A B B C D D 31 B A C B B D D C 32 A D B B B D C B 33 D B A C B A A D 34 C B D D A C A A 35 A B B B A B C A Trang 4/4 - Mã đề 132